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A boy is walking away from a lamppost. How fast is his shadow moving? 

A ladder is resting against a wall. If the base is moved out from the wall, how 
fast is the top of the ladder moving down the wall? 

Such "related rates problems" are old chestnuts of introductory calculus, used both 
to show the derivative as a rate of change and to illustrate implicit differentiation. 
Now that some "reform" texts [4, 14] have broken the tradition of devoting a section 
to related rates, it is of interest to note that these problems originated in calculus 
reform movements of the 19th century. 

Ritchie, related rates, and calculus reform 

Related rates problems as we know them date back at least to 1836, when the Rev. 
William Ritchie (1790-1837), professor of Natural Philosophy at London University 
1832-1837, and the predecessor of J. J. Sylvester in that position, published Princi­
ples o f  the Differential and Integ ral Calculus . His text [21, p. 47] included such 
problems as: 

If a halfpenny be placed on a hot shovel, so as to expand uniformly, at what rate 
is its su ·rface increasing when the diameter is passing the limit of 1 inch and 
1/10, the diameter being supposed to increase uniformly at the rate of .01 of an 
inch per second? 

This related rates problem was no mere practical application; it was central to 
Ritchie's reform-minded pedagogical approach to calculus. He sought to simplifY the 
presentation of calculus so that the subject would be more accessible to the ordina1y, 
non-university student whose background might include only "the elements of 

3 
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Geomehy and the principles of Algebra as far as the end of quadratic equations." 
[21, p. v] Ritchie hoped to rectify what he saw as a deplorable state of affairs: 

The Fluxionary or Differential and Integral Calculus has within these few years 
become almost entirely a science of symbols and mere algebraic formulae, with 
scarcely any illustration or practical application. Clothed as it is in a transcenden­
tal dress, the ordinary student is afraid to approach it; and even many of those 
whose resources allow them to repair to the Universities do not appear to derive 
all the advantages which might be expected from the study of this interesting 
branch of mathematical science. 

Ritchie's own background was not that of the typical mathematics professor. He had 
trained for the ministry, but after leaving the church, he attended scientific lectures in 
Paris, and "soon acquired great skill in devising and performing experiments in natural 
philosophy. He became known to Sir John Herschel, and through him [Ritchie] 
communicated [papers] to the Royal Society" [24, p. 1212]. This led to his appoint­
ment as the professor of natural philosophy at London University in 1832. 

To make calculus accessible, Ritchie planned to follow the "same process of 
thought by which we arrive at actual discovery, namely, by proceeding step by step 
from the simplest particular examples till the principle un folds itself in all its 
generality . "  [21, p. vii; italics in original] 

Drawing upon Newton, Ritchie takes the change in a magnitude over time as the 
fundamental explanatory concept from which he creates concrete, familiar examples 
illustrating the ideas of calculus. He begins with an intuitive introduction to limits 
through familiar ideas such as these: (i) the circle is the limit of inscribed regular 
polygons with increasing numbers of sides; (ii) 1/9 is the limit of 1/10 + 1/100 + 
1/1000 + . . .  ; (iii) 1/2x is the limit of hj(2xh + h2 ) as h approaches 0. Then­
crucial to his pedagogy-he uses an expanding square to introduce both the idea of a 
function and the fact that a uniform increase in the independent variable may cause 
the dependent variable to increase at an increasing rate. Using FrcuRE 1 to illustrate 
his approach, he writes: 

A'-----B 1 2 3 
FIGURE 1 

An expanding square 

Let AB be the side of a square, and let it increase uniformly by the increments 
1, 2, 3, so as to become AB + 1, AB + 2, AB + 3, etc., and let squares be 
described on the new sides, as in the annexed figure; then it is obvious that the 
square on the side A1 exceeds that on AB by the two shaded rectangles and the 
small white square in the corner. The square described on A2 has received an 
increase of two equal rectangles with three equal white squares in the corner. 
The square on A3 has received an increase of two equal rectangles and five 
equal small squares. Hence, when the side increases uniformly the area goes on 
at an increasing rate [21, p. 11]. 
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Ritchie continues: 

The object of the differential calculus, is to determine the ratio between the 
rate of variation of the independent variable and that of the function into which 
it enters [21, p. 1 1] .  

A problem follows: 

If the side of a square increase uniformly, at what rate does the area increase 
when the side becomes x? [21, p. 1 1 ] 

5 

His solution is to let x become x + h ,  where h is the rate at which x Is mcreasing. 
Then the area becomes x 2  + 2 xh + h2, where 2 xh + h2 is the rate at which the area 
would increase if that rate were uniform. Then he obtains this proportion [21, p. 12] : 

rate of increase of the side h 
rate of increase of area 

Letting h tend to zero yields 1j2x for the ratio. 

He then turns to this problem: 

2 xh + h2 · 

If the side of a square increase uniformly at the rate of three feet per second, at 
what rate is the area increasing when the side becomes 10 feet? [21, p. 12] 

Using the previous result, he observes that since 1 is to 2 x  as 3 is to 6x ,  the answer is 
6 X 10. Then he expresses the result in Newton's notation: If x denotes the rate at 
which a vmiable x varies at an instant of time and if u = x 2, then x is to u as 1 is to 
2 x ,  or u = 2 x x. 

In his first fifty pages, Ritchie develops rules for differentiation and integration. To 
illustrate the product rule, he writes: 

If one side of a rectangle vary at the rate of 1 inch per second, and the other at 
the rate of 2 inches, at what rate is the area increasing when the first side 
becomes 8 inches and the last 12? [21, p. 28] 

His problem sets ask for derivatives, differentials, integrals, and the rate of change of 
one variable given the rate of change of another. Some related rates problems are 
abstract, but on pages 45-47 Ritchie sets the stage for the future development of 
related rates with nine problems, most of which concern rates of change of areas and 
volumes. One was the halfpenny problem; here are three more [21, p. 47-48 ]: 

25. If the side of an equilateral triangle increase uniformly at the rate of 3 feet 
per second, at what rate is the area increasing when the side becomes 10 
feet? ... 

30. A boy with a mathematical turn of mind observing an idle boy blowing small 
balloons with soapsuds, asked him the following pertinent question:-If the 
diameter of these balloons increase uniformly at the rate of 1/10 of an inch per 
second, at what rate is the internal capacity increasing at the moment the 
diameter becomes 1 inch? ... 

34. A boy standing on the top of a tower, whose height is 60 feet, observed 
another boy running towards the foot of the tower at the rate of 6 miles an hour 
on the horizontal plane: at what rate is he approaching the first when he is 100 
feet from the foot of the tower? 
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Since the next section of the book deals with such applications of the calculus as 
relative extrema, tangents , normals and subnormals, arc length and surface area, 
Ritchie clearly intended related rates problems to be fundamental, explanatory 
examples. 

Augustus De Morgan (1806-1871) was briefly a professional colleague of Ritchie's 
at London University. De Morgan held the Chair of Mathematics at London Univer­
sity from 1828 to July of 1831 , reassuming the position in October of 1836. Ritchie 
was appointed in January of 1832 and died in September of 1837. In A Budget o f  
Paradoxes, published in 1872, De Morgan wrote [9, p .  296] : 

Dr. Ritchie was a very clear-headed man. He published, in 1818, a work on 
arithmetic, with rational explanations . This was too early for such an improve­
ment, and nearly the whole of his excellent work was sold as waste paper. His 
elementa1y introduction to the Differential Calculus was drawn up while he was 
learning the subject late in life .  Books of this sort are often very effective on 
points of difficulty. 

De Morgan, too, was concerned with mathematics education. In On the Study and 
D ifficulties o f  Mathematics [6], published in 1831 ,  De Morgan used concrete examples 
to clarify mathematical rules used by teachers and students . In his short introduction 
to calculus, Elementar y Illust rations o f  the Differential and Integ ral Calculus [7, p .  
1-2], published in 1832, he tried to make calculus more accessible by introducing 
fewer new ideas simultaneously. De Morgan's book, however, does not represent the 
thoroughgoing reform that Ritchie's does .  De Morgan touches on fluxions , but omits 
related rates problems.  In 1836, shortly before Ritchie's death, De Morgan began the 
serial publication of The Di fferential and Integ ral Calculus, a major work of over 700 
pages whose last chapter was published in 1842. He promised to make "the theory of 
limits . . . the sole foundation of the science, without any aid from the theory of series" 
and stated that he was not aware "that any work exists in which this has been 
avowedly attempted." [8, p .  1]  De Morgan was more concerned with the logical 
foundations of calculus than with pedagogy; no related rates problems appear in the 
text. 

Connell, related rates, and calculus reform 

Another reform text appeared shortly after Ritchie's. James Connell, LLD 
(1804-1846), master of the mathematics department in the High School of Glasgow 
from 1834 to 1846, published a calculus textbook in 1844 promising "numerous 
examples and familiar illustrations designed for the use of schools and private 
students . "  [5, title page] Like Ritchie, Connell complained that the differential 
calculus was enveloped in needless mystery for all but a select few; he, too, proposed 
to reform the teaching of calculus by returning to its Newtonian roots [5, p .  iv] . 
Connell wrote that he 

. . .  has fallen back upon the original view taken of this subject by its great 
founder, and, from the single definition of a rate, has been enabled to carry it 
out without the slightest assistance from Limiting ratio, Infinitesimals, or any 
other mode which, however good in itself, would, if introduced here, only tend 
to mislead and bewilder the student ." [5, p. v] 
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To introduce an instantaneous rate, Connell asks the reader to consider two 

observers computing the speed of an accelerating locomotive as it passes a given 
point. One notes its position two minutes after it passes the point, the other after one 
minute; they get different answers for the speed. Instead of conside1ing observations 
on shorter and shorter time intervals , Connell imagines the engineer cutting off the 
power at the given point. The locomotive then continues (as customa1y, neglecting 
friction) at a constant speed, which both observers could compute . This gives the 
locomotive's rate, or differential, at that point. Connell goes on to develop the calculus 
in terms of rates. For example, to prove the product rule for differentials, he considers 
the rectangular area generated as a particle moves so that its projections along the x­
and y-axes move at the rates dx and dy respectively. As with Ritchie ,  the product 
rule is taught in terms of an expanding rectangle and rates of change . 

Connell illustrates a number of the simpler concepts of the differential calculus 
using related rates problems. Some of his problems are similar to Ritchie's, but most 
are novel and original and many remain in our textbooks (punctuation in original): 

5. A stone dropped into still water produces a series of continually enlarging 
concentric circles; it is required to find the rate per second at which the area of 
one of them is enlarging, when its diameter is 12 inches ,  supposing the wave to 
be then receding from the centre at the rate of 3 inches per second. [5, p. 14] 
6 . One end of a ball of thread, is fastened to the top of a pole, 35 feet high; a 
person, carrying the ball, starts from the bottom, at the rate of 4 miles per hour, 
allowing the thread to unwind as he advances; at what rate is it unwinding, when 
the person is passing a point, 40 feet distant from the bottom of the pole; the 
height of the ball being 5 feet? . . .  
12 . A ladder 20 feet long reclines against a wall, the bottom of the ladder being 
8 feet distant from the bottom of the wall; when in this position, a man begins to 
pull the lower extremity along the ground, at the rate of 2 feet per second; at 
what rate does the other extremity begin to descend along the face of the 
wall? ... 
13. A man whose height is 6 feet, walks from under a lamp post, at the rate of 3 
miles per hour, at what rate is the extremity of his shadow travelling, supposing 
the height of the light to be 10 feet above the ground? [5, p. 20-24] 

Connell died suddenly on March 26 , 1847, leaving a wife and six children. The 
obituary in the Glasgow Courier observed that "he had the rare merit of communicat­
ing to his pupils a portion of that enthusiasm which distinguished himself. The science 
of numbers . . .  in Dr. Connell's hands . . .  became an attractive and proper study, 
and . . . his great success as a teacher of children depended on his great attainments 
as a student of pure and mixed mathematics" [26]. It would be interesting to learn of 
any contact between Ritchie and Connell, but so far we have found none . 

The rates reform movement in America 

Related rates problems first appeared in America in an 1851 calculus text by Elias 
Loomis (1811-1889), professor of mathematics at Yale University. Loomis was also 
concerned to simplify calculus, writing that he hoped to present the material "in a 
more elementary manner than I have before seen it presented, except in a small 
volume by the late Professor Ritchie" [17, p. iv] . Indeed, the initial portion of 
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Loomis's text is essentially the same as Ritchie's. Loomis presents ten related rates 
problems, nine of which are Ritchie's ;  the one new problem asks for the rate of 
change of the volume of a cone whose base increases steadily while its height is held 
constant [ 17, p. 1 13]. Loomis's text remained in print from 1851 to 1872; a revision 
remained in print until 1902. 

The next text to base the presentation of calculus on related rates was written by 
J .  Minot Rice (1833- 1901), professor of mathematics at the Naval Academy, and 
W. Woolsey Johnson (1841-1923), professor of mathematics at St. John's College in 
Annapolis .  Where Loomis quietly approved the simplifications introduced by Ritchie, 
Rice and Johnson were much more enthusiastic reformers, drawing more from 
Connell than from Ritchie : 

Our plan is to return to the method of fluxions , and making use of the precise 
and easily comprehended definitions of Newton, to deduce the formulas of the 
Differential Calculus by a method which is not open to the objections which 
were largely instrumental in causing this view of the subject to be abandoned 
[ 19, p .  9] .  

In their 1877 text they derive basic differentiation techniques using rates .  Letting 
dt be a finite quantity of time,  dx I dt is the rate of x and "dx and dy are so defined 
that their ratio is equal to the ratio of the relative rates of x and y" [20, p. iv] . This 
approach has several advantages .  First, it allows the authors to delay the definition of 
dy I dx as the limit of Ll y ILl x until Chapter XI, by which time the definition is more 
meaningful. Second, "the early introduction of elementary examples of a kinematical 
character . . . which this mode of presenting the subject permits , will be found to 
serve an important purpose in illustrating the nature and use of the symbols em­
ployed" [20, p .  iv] . 

These kinematical examples are related rates problems .  Rice and Johnson use 26 
related rates problems, scattered throughout the opening 57 pages of the text, to 
illustrate and explain differentiation . Rice and Johnson credit Connell in their preface 
and some of their problems resemble Connell's . Several other problems are similar to 
those of Loomis . However, Rice and Johnson also add to the collection of problems: 

A man standing on the edge of a wharf is hauling in a rope attached to a boat at 
the rate of 4 ft . per second. The man's hands being 9 ft. above the point of 
attachment of the rope, how fast is the boat approaching the wharf when she is 
at a distance of 12 ft . from it? [20, p .  28] 

Wine is poured into a conical glass 3 inches in height at a uniform rate, filling 
the glass in 8 seconds . At what rate is the surface rising at the end of 1 second? 
At what rate when the surface reaches the brim? [20, p .  37-38] 

After Rice died in 1901 ,  Johnson continued to publish the text until l909 . He was 
"an important member of the American mathematical scene . . .  [who] served as one 
of only five elected members of the Council of the American Mathematical Society for 
the 1892-1893 term" [22, p. 92-93]. The work of Rice and Johnson is likely to have 
inspired the several late 19th century calculus texts which were based on rates, 
focusing less on calculus as an analysis of tangent lines and areas and more on "how 
one quantity changes in response to changes in another ." [22, p. 92] 

James Morford Taylor (1843- 1930) at Colgate, Catherinus Putnam Buckingham 
(1808-1888) at Kenyon, and Edward West Nichols (1858-1927) at the Virginia 
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Military Institute all wrote texts that remained in print from 1884 to 1902, 1875 to 
1889, and 1900 to 1918, respectively. Buckingham, a graduate of West Point and 
president of Chicago Steel when his text was published was, perhaps, the most zealous 
of these reformist "rates" authors , believing that limits were problematic and could be 
avoided by taking rate itself as the primitive concept, much as he believed Newton did 
[2, p. 39]. 

Newton and precursors of the rates movement 

Buckingham was correct that Newton conceived of magnitudes as being generated by 
motion, thereby linking calculus to kinematics . Newton wrote: 

I consider mathematical quantities in this place not as consisting of very small 
parts ; but as described by a continued motion. Lines are described, and thereby 
generated not by the apposition of parts , but by the continued motion of points ; 
superficies by the motion of lines . . . . These geneses really take place in the 
nature of things , and are daily seen in the motion of bodies . . . . Therefore 
considering that quantities which increase in equal times . . . become greater or 
less according to the greater or less velocity with which they increase and are 
generated; I sought a method of determining quantities from the velocities of 
the motions . . .  and calling these velocities . . .  fluxions . [3, p. 413] 

Since the 19th century reformers drew on Newton in revising the pedagogy of 
calculus ,  one wonders whether rates problems were part of an earlier tradition in 
England. The first calculus book to be published in English, A Treatise o f  Fluxions or 
an Introduction to Mathematical Philosophy [13] by Charles Hayes (1678-1760), 
published in 1704, treats fluxions as increments or decrements . Motion is absent and 
there are no related rates problems. But, in 1706, in the second book published in 
English, An Institution o f  Fluxions [10] by Humphrey Ditton (1675-1715), there are 
several problems which could be seen as precursors of related rates questions . While 
Ditton is interested in illustrating ideas of calculus using rates ,  he sticks to geometrical 
applications , not mechanical ones . He writes : 

A vast number of other Problems relating to the Motion of Lines and Points 
which are directly and most naturally solved by Fluxions might have been 
propos'd to the Reader. But this Field is so large, tlmt 'twill be besides my 
purpose to do any more upon this Head than only just give some little Hints . 
[10, p. 172] 

He gives one worked example . In FIGURE 2, b and c represent the new positions of 
points B and C respectively: 

If the Line AB , in any moment of Time be supposed to be divided into extream 
and mean Proportion, as ex. gr in the point C ;  then tl1e Point A continues fixt, 
and the Points B and C moving in the direction AB , 'tis requir'd to find the 
Proportion of the Velocities of the points B and C ;  so that the flowing line Ab, 
may still be divided in extream and mean Proportion, e.g. in the Point c ."  [10, 
p. 171-172] 

b B c 

FIGURE 2 
Points moving on a line 

C A 
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In his solution he lets AB = y, AC = x and BC = y - x and obtains __}f_ = Y-x y- X X 
giving 3yx = y 2+ x 2• He differentiates ,  obtaining 3 y x+ 3 x y= 2 y y+ 2 x x  which 
gives � = 32 Y- 23x. Ditton summarizes by saying, "the velocity of the Increment of the y y- X 
less Segment AC, must be the velocity of the Increment of the whole line AB as 
�1! = ���" [10, p. 172]. His concern was to express ratios of rates of change of 
lengths in terms of ratios of lengths within the context of some geometric invariance. 
He was not seeking to use an equation involving rates of change as a centerpiece of 
pedagogy, but rather as a straightforward application of the calculus. His work did not 
lead to the development of such problems . Of the thirteen 18th century English 
authors surveyed, only William Emerson (1701-1782), writing in 17 43, included a 
related rates problem, but not in a significant way [11, p. 108] . 

In the early 19th centmy we find scattered related rates problems . There is a sliding 
ladder problem in a Cambridge collection: "The hypotenuse of a right-angled triangle 
being constant, find the corresponding variations of the sides . "  [25, p. 678] John 
Hind's text included one problem: "Corresponding to the extremities of the latus 
rectum of a common parabola, it is required to find the ratio of the rates of increase of 
the abscissa and ordinate" [14, p. 148]. Neither of these problems plays the important 
pedagogical role that we find in the works of Ritchie or Connell. 

The twilight of related rates 

Why did so few books illustrate calculus concepts using related rates problems? One 
reason is that from the beginning of the 18th century to the middle of the 19th 
century, the foundations of calculus were hotly debated, and Newton's fluxions did not 
compete very successfully against infinitesimals, limits , and infinite series . Among 
those who chose to base calculus on fluxions, many still felt uneasy about including 
kinematical considerations in mathematics . In A Comparative View o f  the P rinciples 
o f  the Fluxional and Differential Methods, Prof. D .M .  Peacock wrote that one of the 
leading objections to the fluxional approach was that "it introduces Mechanical 
considerations of Motion , Velocity , and Time, foreign to the genius of pure Analytics" 
[18, p. 6] . Such concepts were considered by some to be "inconsistent with the rigour 
of mathematical reasoning, and wholly foreign to science ."  [23, p. 7] 

In England, moreover, resistance to Newton's approach to calculus as well as to the 
French approach as expressed in Lacroix's textbook [16] rested in part on the belief 
that the purpose of mathematics was to train the mind. That meant doing calculus 
within a Euclidean framework with a clear focus on the properties of geometrical 
figures [1, p. v-xx]. 

By the end of the 19th century, most authors were developing calculus on the basis 
of limits . In the works of Simon Newcomb (1835-1909) and Edward Bowser 
(1845-1910), for example, related rates problems illustrate the derivative as a rate of 
change, but the problems are not central. In 1904, William Granville (1863-1943) 
published his Elements o f  the Di ffe rential and Integ ral Cal culus, which remained in 
print until 1957. This text, which introduced concepts intuitively before establishing 
analytical arguments , became the standard by which other texts were measured. In the 
1941 edition, Granville laid out a method for solving related rates problems, but these 
problems had now become an end in themselves rather than an exciting and 
pedagogically important method by which to introduce calculus . 
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Conclusion 

An informal survey of ours suggests that for many teachers these problems have lost 
their significance . One often hears teachers say that related rates problems are 
contrived and too difficult for contemporary students . It is thus ironic that such 
problems entered calculus through reformers who believed, much as modem reform­
ers do, that in order for calculus to be accessible, concrete, apt illustrations of the 
derivative are necessary. Twilight for our 19th century reformers would have sug­
gested a lengthening, accelerating shadow, not the end of an era. They might well 
have written: 

Related rates , a pump , not a filter ; a sail , not an anchor . 

NOTE . See http: //www.maa.org/p ubs/mm-supplements/ index.html 
for a more extensive bibliography. 
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Proof Without Words: Self-Complementary Graphs 

A graph is simple if it contains no loops or multiple edges. A simple graph 
G = (V, E)  is self-complem entary if G is isomorphic to its complem ent G = (V, E), 
where E = {{v, w} : v, w E V, v =I= w, and {v, w} fl. E}. It is a standard exercise to show 
that if G is a self-complementary simple graph with n vertices, then n = 0 (mod 4) or 
n = 1 (mod 4). A converse also holds , as we shall now show. 

THEOREM.  If n is a positive integer and either n = 0 (mod 4) or n = 1 (mod 4), 
then there exists a self-complementary simple graph en with n vertices . 

Proof 
• Gl: P 

x y z w y w x z  

G5:V G_,:y 
p p 

• • • • • • • • 
G4 : a b c d 'G4 : b d a c 

c, � c, � 
a b e d b d a c 

-STEPHAN C .  CARLSON 
RosE-HULMAN INsTITUTE OF TECHNOLOGY 

TERRE HAUTE, IN 47803 
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Chaotic Results for a Triangular Map 
of the Square 

1. Introduction 
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One-dimensional dynamical systems are well understood, and there are many well­
known families of maps which illustrate possible behaviors typical to one dimension. 
The purpose of this paper is to present an example of a chaotic two-dimensional 
system (the "triangular map of the square" named in the title). This example 
illustrates some of the interesting behaviors that are possible in higher dimensions, 
and so we present it as a springboard that points toward the kind of behaviors one 
might investigate for other two-dimensional maps, and also toward how one might 
investigate them. 

The intermediate value theorem is the backbone of many of the loveliest and most 
practical theorems we have for dynamical systems of one variable, whereas the fact 
that it doesn't hold for functions of more than one variable makes those systems hard 
to study. A particularly valuable corollary of the intermediate value theorem (due to 
Brouwer), which we will use several times in Section 3 of this paper, is this: 

FIXED POINT THEOREM.  Iff: [a ,  b ]  � � is continuous and either j([ a , b ]) �[a, b ]  
o r  [ a, b ]  �j([ a, b ]), then there is a point c E [ a, b ]  such that j(c) = c . 

We have said that one-dimensional dynamics are well-understood and familiar. In 
this paper, we will make great use of a typical example of a chaotic dynamical system, 
the tent map T: I� I, I =  [0, 1], given by 

T( x ) = 
( 2 x  
2 - 2 x  

O �x �k 
k< x �1 · 

As is usual in dynamical systems, we will adopt the notation T2 =ToT, T3 =ToTo T, 
and so on. In particular, we will take advantage of the following properties of the tent 
map:  

(1) T is topologically transitive: that is ,  for any pair of non-empty open sets U, V c I, 
there is an integer n such that T"(U) n V =I= 0; 

(2) Even stronger, T is topologically mixing : that is, for any pair of non-empty open 
sets U, V c I, there are positive numbers N and k such that Tn(U) n y-k (V ) =I= 
0 for all n > N; 

(3) And, in fact, T is locally eventually onto : for any non-empty open set U c I, 
there is an integer n > 0 such that Tn(U) =I; 

(4) The periodic points of T are dense in I; and 
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(5) If x is a periodic point of T, then x E Q, and if x E Q n I then there is some 
n � 0 so that yn( x ) is periodic. (It may be that n = 0, in which case x is itself a 
periodic point.)  

These standard results can be found in almost every undergraduate course in 
dynamical systems, and any reader who is familiar with these has sufficient back­
ground for the rest of this article. We will use these statements-particularly (3), (4), 
and (5)-to study our two-dimensional system. 

Our map The function F : I 2 � I 2 that we will study throughout the rest of the 
paper is given by F :  ( x ,  y) 1--') (T ( x ) , g x( y ) ) , where I2 = [0, 1] X [0, 1] ,  T( x )  is the 
tent map and ( (t +x) y ,  

g x( y ) = ( 3 ) +( l) 2- x y  x - 2, 
for x ::-::;; k 
for x > � · 

We should make a few remarks about what this function looks like and why we study 
this function out of all the available possibilities . 

The map of F can best be described using pictures .  Consider mapping I 2 = 
[0, 1] X [0, 1] via F. The effect of g x( y)  is to push down the left hand side of the 
square toward the x-axis ;  the right hand side is pushed up toward the line y = 1 .  The 
tent map stretches the square horizontally to double its original width and then folds 
the entire left half over the right half. FrcuRE 1 shows first the effect just of g/  y) and 
then our map F. Hence, F maps the unit square back onto itself. 

FIGURE 1 
Diagram of(x, y) ,_., ( x, gx( y)) and ( x, y) ,_., ( T( x ), gx( y) ). 

This is an example of a triangular map , so called because in higher dimensions they 
take the form F( x , y , z ,  . . .  ) = ( f( x ), g ( x , y ), h( x , y , z ), . . .  ). (These have applica­
tions to neural networks .) In two dimensions, our map is known, bizarrely, as a 
"triangular map of the square . "  Kolyada [6] wrote an extensive paper about these 
maps, in which he proved (among many other things) two theorems of particular 
interest to our case: 

THEOREM [PERIODIC POINTS] . If F( x ,  y )  = ( f( x ), g ( x ,  y )) is a continuous function 
from the unit square into itself and ( x ,  y) is a periodic point o f F , then x is a periodic 
point o f  f. Conversely, if x is a periodic point o f f then the re is some y E I so that 
( x, y) is a pe riodic point o f  F. 

THEOREM [DENSE ORBITS] . If the orbit o f  ( x ,  y )  under F ·is dense in I 2, then the 
orbit o f  x under f is dense in I. 
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The proofs of both of these theorems use the intermediate value theorem and the 

fixed point theorem; we will prove the result about periodic points in our own specific 
case in Section 3. The second part of the theorem explains why, if we want F to be 
chaotic, we must use a chaotic function (such as the tent map) for the first coordinate 
of our map.  If we used a simpler function f, such as a monotone function, then 
F = ( f, g )  would not be chaotic, either. 

Another nice aspect of this map-one which we will use to get estimates for the 
sizes of the images of sets-is that T( x )  is piecewise linear in x, and that for any fixed 
x, g x( y ) is linear in y . 

Which of the properties that we listed above for T also hold for F? The two 
questions dynamicists would most like to be able to answer for general maps are ones 
of transitivity and dense periodic points , since these two criteria are often used to 
determine whether a function is chaotic (see, e .g. ,  [5]). Here, then, are the questions 
we will ask about our map, along with the answers . 

Q: Is F transitive? 
A: Yes,  in fact it is topologically mixing, a much stronger condition. 

Q: Are the periodic points of F dense? 
A: Yes , but not as dense as you might think. (We will explain this enigmatic 

statement in our theorem.) 

To be precise, we will prove the following 

MAIN THEOREM .  Let F :  I 2 � I2 be defined by F :  ( x ,  y) 1--') (T( x ), g / y)), where ( 2 x  
T ( x ) = 

2 - 2 x  
for x ::::;; i 

1, and 
for x > 2 ( ( i + x ) y for x ::::;; � 

g x( Y) = 
(% - x ) y + ( X - i) for X > i . 

Then F is topologically mixing and the periodic points o f  (F ,  I2) are dense. However, 
for any given x E I, there is at most one value y E I so that ( x, y )  is a periodic point 
o f F. 

We will present the proof in Section 3, after a series of lemmas that appear in 
Section 2. 

2. The size of things 

What happens to the image of an open set in I2 when it is mapped by F? From the 
picture in FrcuRE 1, you might expect that the set gets wider and possibly shorter­
except that if the set crosses the line x = i, that part of the set will be mapped to 
x = 1 and remain the same height. If we map the image of the set under F yet again, 
the subsequent image ought to be even wider and shorter than before. This is 
precisely what the next two lemmas tell us. To simplifY notation, we'll use IILIIy to 
denote the height of a vertical line segment L c I 2, and II U II x to denote the 
horizontal width of a set U c I2• Formally, we define 

I I VI I x = sup{x l( x , y ) E U} - inf{x l( x , y ) E U}. 

LEMMA 1 .  For any connected open set U c I 2, there is some n > 0 so that 
IIF"(U)IIx = I. 
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LEMMA 2. The image of the second iterate of any vertical line segment L = 
({ x} ,  [ y0 ,  y 1 ]) c I2 is shorter than L. In particular , IIF2(L) II y.:::;; �IlLII y· 

Lemma 1 is a consequence of the locally eventually onto prope1ty of the tent map 
(the third statement in the introduction). The proof is fairly standard. 

Proof of Lemma 1. Pick a positive integer n such that ;, < II U II x. Then we can find 

some positive integer k and two values Yo, y 1 E I such that the points ( �, y0) and 211 . ( �.7+�, y1) are both in U. Without loss of generality, assume k + 1 is even. Then it is 

easy to compute that yn+ l ( �.7+�) = 0 and yn+l ( 2,: 1 ) = 1, so, by the intennediate 

value theorem, yn+l ( [ 2,: 1 , �.�; ] ) = I. Therefore, IIF"+ 1 (U) II x = 1 .  • 

Before we move to the proof of Lemma 2, we will briefly discuss notation. Although 
we cannot iterate the function g ( g  takes two variables and returns one), we will 
nonetheless use g;( y) to denote the second coordinate of F2( x ,  y )  = F o F( x ,  y ). 
Proof of Lemma 2. We begin with a line segment L = { x} X [ y0 ,  y 1 ] .  Note that 
IILI IY = y 1 - Yo· There are four cases to consider: 
Case 1: 0.:::;; x .:::;; t so that x .:::;; � and T( x ) .:::;; k; 
Case 2: ±.:::;; x .:::;; t so that x .:::;; � and T( x) .:::;; � ;  
Case 3: �.:::;; x .:::;; � , so that x :2: � and T( x )  :2: t 
Case 4: �.:::;; x .:::;; 1, so that x :2: � and T( x) .:::;; � -
We prove Case 1 ;  the other cases are similar. Suppose 0.:::;; x .:::;; 1/4.  Then g x( y ) = 

G + x )y ,  and hence 

g ;( y ) = a + (2 x ) )[(t + x )y ] = (± + %x + 2 x 2 ) y .  
That is , while IILIIy = ( y 1 - y0), we have IIF 2(L) II y = (-!(- + %x + 2 x 2 )( y 1 - y0). 

We could think of (± + %x + 2 x 2 ) as representing the slope of g ;( y ) with respect to 
y. The maximum slope of g/  y)  occurs at the endpoint x = -!(-; in other words , 

JjF2(L) jjy.:::;; %( Yr - yo) = � IlLII- • 

The slope of g ;( y )  in each region is shown in FrcuRE 2 to provide graphical 
confirmation for all four cases. 

slope of g_�( y) l 

3/4 

l/2 

l/4 

X 
0 l/4 l/2 3/4 l 

FIGURE 2 
Slope of g;( y) for 0::::;; x ::::;; 1.  

The above figure leads us to remark that the proof of Lemma 2 could easily be 
modified to prove: 
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LEMMA 3. The second image of any vertical line segment L = ({ x} ,  [ y0 ,  y 1 ]) c I 2 is 

not arbit rarily shorter than L. In parti cular, IIF2(L)IIy � ±IILIIy· 
In order to prove our main theorem, we will have to consider backwards iterates of 

F as well as forward iterates .  What kinds of sets will map into a chosen set? The 
natural conclusion would be "something that's taller and skinnier. " The only prob­
lem with this answer is that F is not one-to-one : sometimes the preimage of a set is 
2 sets , and we might imagine that two short sets could combine together to produce 
a tall set. The next lemma says that this is not the case: that even if the preimages of a 
line segment split into several pieces, at least one of those pieces has to be bigger than 
the set we started with. The corollary to Lemma 4 says that each set has an eventual 
preimage which reaches from the top to the bottom of I 2 . 

LEMMA 4. Fix a line segment L = { x} X [ y0 , y 1 ] .  There is some n > 0 and some 
connected set K c I 2 such that F "(K )  c;:;, L and IIKIIY � min (�IILII Y' 1). 

Proof Because of the way in which F is defined, mapping a vertical line segment 
via F- 1 may result in an image having one or two vertical line segments . If F- 1 (L) 
contains a connected component L1 such that F(L1 ) = L, then we will say F- 1 (L) 
does not split . If, on the other hand, F- 1 (L) consists of two vertical line segments 
L1 , L2, such that F(L1 ) =/= L and F(L2 ) =/= L, then we will say F- 1 (L) splits . This 
latter case happens if y0 and y 1 lie in different one-to-one regions of I 2-that is, if 
L crosses both of the lines y = k( x + 1) and y = k(l - x) .  

Appropriately, we split the proof of the lemma into two segments . 

No splitting : If F- 1 ( L) does not split and F- 2 ( L) does not split, then K = F-2 (L) 
is a single vertical line segment, and so it follows directly from Lemma 2 that 
IIF2(K)IIy::::; iiiKIIy; that is, IIKIIy � �IlLII". 

At least one splitting : A line segment L splits if it intersects both of the lines 
y = k( x + 1) and y = k(l - x) .  The pre-images of these lines are subsets of the lines 
y = 1 and y = 0 respectively. We can write F- 1 ( L) = L0 U L1 , where L0 is the 
component intersecting y = 0 and L1 intersects y = 1 (see FrcuRE 3). 

X 
FIGURE 3 

The components of F-1(L). 

Suppose p-n(L0) never splits. Then as above, I I F- 2 m(L0) 1 1 '1 � (�tiiL0IIy � �IILIIy 
for sufficiently large m; K = F- 2m( L0) is the line segment we want. 

Suppose on the other hand that F- "(L0) splits for some n > 0. Then in fact we get 
a preimage of height one !  This is because the lower endpoint of F- "(L0) lies on the 
line y = 0 for all n ; a splitting can only happen if the upper endpoint of p-n+ 1 (L0) 
lies above the line y = k( x + 1), whose preimage includes the line y = 1 .  This in turn 
implies (using the intermediate value theorem) that at least one line segment con­
tained in F- "(L0) looks like K = { x} X I, with Tn( x) = x. So IIKIIy = IIF-"(L0)IIy = 1 .  
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The remaining case-that F- 1 (L0 )  does not split, but F-2 ( L) does-is analogous. 
This completes our proof. • 

COROLLARY. For any vertical line segment L = { x} X [ y 0 ,  y 1 ] , there is some n > 0 
and some connected set K c I 2 such that F "( K) r;;, L and II K II y = 1 . 

Proof We will prove the corollary by induction. Pick m > 0 such that ( �ti iL I Iy � 1 . 
Let K0 = L, and for i = 1 , . . .  , m, let ni ,  Ki be as  guaranteed by Lemma 4. That is, 

Then 

F" • ( Ki ) r;;, Ki - l and I IKi I IY � min{� II Ki _ 1 I IY , 1) . 
pn , + n 2 +-+ n ,.. ( Km ) r;;, K0 = L and 1 1Km 1 1y � min( ( �r i iLI Iy , 1) = 1 .  • 

3 .  Putt ing the pieces together 

Now that we have a nice collection of lemmas about images and preimages of sets 
under F to work with, we are ready to prove our main theorem. 

Proof that F is topologically mixing . Pick any two non-empty open sets U, V c I2 • 
We want to show that there are positive numbers N and k such that F"(U )  n 
F- 1 (V ) =F 0 for all n > N. By the Corollary to Lemma 4, we can select a positive 
integer k and a set K r;;, F-k (V ) so that I IK I Iy = 1 .  By Lemma 1 we can pick N such 
that I IFN (U ) I I x = 1. Indeed, IIFn (U) I I x = 1 for all n � N (see FIGURE 4 below). It 
follows that pn(U)  n p-k (V ) -;;;2 F"(U )  n K =F 0. 

G 

(0, 0) 

(1 ,  l)  

(0, 0) 
FIGURE 4 

Intersection of p N(U)  and p-k(V ). 

Proof that periodic points of (F, I2 ) are dense . Fix a non-empty open set U c I2 . 
We want to show that there is a point ( x ,  y )  E U that satisfies F" ( x ,  y )  = ( x , y )  for 
some n =F 0. Without loss of generality we can assume that U is a rectangle with width 
e > 0 and height 3e. 

We will combine the results of Lemma 1 , Lemma 2, and topological mixing to 
select an n > 0 which satisfies 

(i) pn(U)  intersects non-trivially with the middle e X  e square in U; 
(ii) I IFn (U ) I I x = 1 ; and 
(iii) For every vertical line segment L cF"(U ), we have I IL I IY < e. 

Here's where the fixed point theorem kicks in. Let us use 7Tx and 'TTY to denote the 
projections from I 2 onto the x-axis and the y-axis respectively. By (i) and (ii), we can 
see that 7Tx (U ) c 7Tx(Fn(U)) = I . Therefore, there is some x0 E 7T/U)  with 
7Tx(Fn( x0 ,  y )) = x 0 .  (This is the same as saying Tn( x0 )  = x 0 ,  which makes sense­
we have just showed that periodic points of the tent map are dense in I.) Fix x 0 •  
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We find Yo similarly. We will now look only at the part of U which has x 0  as its 

first coordinate : Let Lx0 = U n ({ x0} X I ). By (i) and (iii) we have 7TY( F n( Lx)) c 
7T/ Lx)· Therefore, the fixed point theorem tells us that there is a fixed point Yo 
of 7TY( Fn). Accordingly, ( x0 , y0) E U i s  a fixed point of  F n . This concludes the proof 
that periodic points are dense. • 

Proof that any vertical line has at rrwst one periodic point . Fix x0 E I. If x0 is not a 
periodic point of (T, I ), then clearly there is no y E I which makes ( x0 ,  y )  a periodic 
point of (F ,  I 2 ) . Therefore suppose that T P( x0 ) = x0 and that p is the smallest such 
positive integer. We will show that there exists exactly one Yo E I such that 
FP ( x 0 ,  y0)  = ( x 0 ,  y0) ; and if y 1 =I= y 0 ,  then pk( x0 ,  y 1) =I= ( x0 ,  y 1 ) for k >  0. 

For fixed x 0 ,  the map 7TyCF P( x 0 ,  * )) maps I into itself. By the fixed point theorem, 
it must have at least one fJXed point Yo E I. On the other hand, pick an arbitrary 
y E I. Then 

Since }y g x( y ) ::;; 1 for any x E I, we know that 7TyCF P ( x 0 ,  * )) is a contraction: it 
has no more than one fJXed point, which implies ( x0 ,  y 0 )  is the only periodic point of 
F on the line segment { x0} X I. • 

The last thing we would like to do in this section is to demonstrate how to find 
periodic points of ( F, I 2 ). It is clear upon inspection that there is a fJXed point at the 
origin: F(O, 0) = (0, 0). It is less clear, but still true, that there is a second fJXed point 
at ct 1). The astute reader will notice that X =  0 and X =  � are the only fJXed points 
of the tent map. 

In general, if we want to find periodic points of ( F, I 2 ) we begin with the tent map 
and then "lift" that orbit up into the square . For example, suppose we want to find a 
period-3 point of (F ,  I 2 ) . First choose a period-3 orbit of (T, I ), say {% , t �} . (We 
found this orbit by solving x = T3( x ) = 2 - 2(2(2 x )) .) Then we plug (% , y )  into our 
triangular map .  The first iterate is : 

F {% , y ) = a , a + % ) y ) = ( t , (�) y ) ; 
the second iterate is : 

F 2 ( % , y ) = F (t , (� ) y ) = (t G + t ) (N) y ) = (t ( ;�! ) y ) ; 
and the third is : 

F 3 (% , y ) = Fa , (;�! ) y ) = ( % , ( % - � )(;�!) y + ( � - �) )  = ( % , (��D Y + fs) . 
Setting y = ( ���) y + fa, we can simplifY to .p.et y = ;:�. Thus, one of the period-3 
orbits of (F ,  I 2 ) is { ( % , ;!� ) ,  ( t , !M�D ,  (� , ��1 ) } .  The reader can check that the other 
is { ( t ,  1�5�) ,  ( t ,  2����8 ) ,  ( % , 2���7� ) } .  The numbers involved are large, but the compu­
tations are otherwise straightforward. 

4 .  Conclusion, or what next? 

We believe that triangular maps provide a rich source of easily accessible open 
questions for undergraduates-indeed, this paper is the outcome of an undergraduate 
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research project undertaken during the junior year of one of the authors of this paper. 
We approached the subject via the question: 

If a continuous triangular map-that is , a map of the form F( x ,  y )  = 

(f( x), g ( x ,  y ))-has dense periodic points , and ·if every iterate of that map is 
transitive, then is the map topologically mixing ? 

Indeed, if we replace "triangular map" by a "map f :  X --'»  X " ,  then this question 
has been proved in the affirmative for X =  I [1], for X =  S 1 

[3], and for X a 
one-dimensional branched manifold [2]. This question is widely known to be true for 
subshifts of finite type, although there is a counterexample for more general shift 
maps [4] . However, the question is still open for higher-dimensional maps. 
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1 .  Introduction 

On Minimum Spanning Trees 
and Determinants 

PERRIN WRI G HT 
F lor ida State U n iversity 

Ta l l ahassee, FL 323 06 -4 5 10 

In the 1840's , Kirchhoff, while putting forth his defining work on circuit theory, was 
simultaneously pioneering the theory of graphs , a development which occupies a 
central place in circuit theory. Using algebraic methods , Kirchhoff [3] found a way to 
determine whether a set of edges in a connected graph was a spanning tree, that is, a 
tree containing all the vertices of the graph. In his setting, the spanning trees 
correspond to certain nonsingular submatrices of a matrix constructed from the 
incidence matrix of the graph. 

Over time, graphs came to be treated as discrete structures as well, consisting of 
finite sets of vertices and edges, without the algebraic structure that Kirchhoff used. 
Later in the century, attention was given to weighted graphs , graphs whose edges have 
been assigned real values . A classical problem in weighted graphs is this : Given a 
connected weighted graph, find all the spanning trees that have the minimum edge 
weight sum. These trees are called minimum spanning trees , and an algorithm for 
finding one was given as early as 1926 by Boruvka, whose work is discussed in [2]. In 
1956 Kruskal [4] developed another algorithm for finding a minimum spanning tree; it 
is perhaps the most famous of all such algorithms . Minimum spanning trees have 
many applications ; some of the most obvious ones deal with the minimizing of cost, 
such as the cost of building pipelines to connect storage facilities . 

We will begin by outlining the results of Kirchhoff and Kruskal . Although both 
approaches have to do with spanning trees in graphs , they appear to have little else in 
common. We show that there is indeed a more profound connection, which we 
develop here . In particular, we will develop an algorithm that uses Kirchhoffs · 
determinants to generate the set of all minimum spanning trees in a weighted graph. 
In the process, the linear algebra and the discrete mathematics come together in a 
pleasing, intriguing, and accessible way, and it is hoped that students may be 
encouraged to follow this expository article with further exploration. 

2. Kirchhoff's theorem 

If a graph G has n vertices and b edges, the incidence matrix of G is the n X b 
matrix in which each column (edge) has exactly two non-zero entries, + 1 and - 1 , 
indicating the two vertices for that edge . (The signs , which can be placed arbitrarily, 
effectively put a direction on each edge, but this direction is not relevant to what 
follows.) We assume that G has no loops . 

For a connected graph G, the rank of the incidence matrix is n - 1 , and the 
deletion of any row leaves a matrix of rank n - 1 . We delete the last row to obtain an 
(n - 1) X b matrix A, called the reduced incidence matrix . The determinant of any 
square submatrix of A is either zero or ± 1 . An ( n - 1) X ( n - 1) sub matrix of A is 
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non-singular if and only if its columns correspond to the edges of a spanning tree of 
G. A thorough development of these properties can be found in [1 ] ,  but all are 
straightforward and make good exercises . 

Kirchhoffs observation becomes our first theorem. 
THEOREM 1 . The spanning trees of the connected graph G are the nonsingular 

(n - 1) X (n - 1) submatrices of the reduced incidence matrix A ,  and the determi­
nants of these submatrices are all ± 1 . 

Kirchhoff s celebrated formula states that det ( AA T ) is equal to the number of 
spanning trees in G. This formula, which follows from Theorem 1 and the Binet­
Cauchy theorem on determinants, has gathered much attention but does not shed as 
much light as Theorem 1 itself. 

3 .  Kruskal's algorithm 

There are many algorithms for finding a m1mmum spanning tree in a weighted 
graph G. Kruskal's algorithm is perhaps the most widely known. 

KRUSKAL's ALGORITHM.  Choose any unchosen edge of lowest weight that does not 
create a cycle with the chosen edges , and continue until no nwre edges are available . 

The graph in Figure 1a has four different minimum spanning trees, and Kruskal's 
algorithm can be executed in such a way as to yield any one of them. 

5 

3 3 

FIGURE 1 

In the next section we use Kruskal' s algorithm to connect Kirchhoff s determinants 
and the set of minimum spanning trees in G. First, ' we need to generalize Kirchhoffs 
reduced incidence matrix to weighted graphs . Let w be the weight function on the 
edges of G. For the remainder of this article we assume that w has positive integer 
values. 

We begin by altering the incidence matrix in such a way that the two entries in the 
column corresponding to the edge e are ± w(e) instead of ± 1 . For the same reasons 
as before, a set H of n - 1 edges of G will be a spanning tree if and only if 
det M( H )  =I= 0, where M( H )  is the (n - 1) X (n - 1) submatrix of the reduced 
incidence matrix A whose columns correspond to the edges of H. It is also clear that, 
for any spanning tree H, det M( H )  = ± 0, where 0 is the product of the weights of 
the edges in the tree. Fortunately, these determinants can be used to identifY the 
minimum spanning trees of G, as we will see later. For the time being, we will put the 
matrix A aside and consider geometric properties instead. 
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I n  the weighted graph G, suppose T is a minimum spanning tree and f is an edge 

of G not in T. Suppose further that e lies on the unique simple path (no repeated 
edges or vertices) in T joining the vertices of f, and that w(e) = w(f). Then one can 
replace e by f to get another minimum spanning tree. We call this move an equal 
edge replacement in T ;  others call it an exchange of weight zero. 

THEOREM 2 .  If T and S are minimum spanning trees in the weighted graph G,  
then there is a finite sequence of equal edge replacements that start with T and end 
with s .  

Theorem 2 should perhaps be the first result that students encounter. Yet we have 
seen it stated only once in a text [5], and there only implicitly, as an exercise. 

Every weighted graph has an edge weight spectrum, the set of edge weights listed 
with multiplicities. The following result is an immediate corollary to Theorem 2 :  

THEOREM 3. Any two minimum spanning trees in G have the same edge weight 
spectrum. 

The constancy of the edge weight spectrum can be used to great advantage in 
studying minimum spanning trees, so it is puzzling that so basic a fact has not made its 
way into textbooks on discrete mathematics .  When the author first began to teach this 
subject to undergraduates, he naively imagined that one might find two trees that 
achieved the minimum edge sum using different summands . But it cannot be done. 
Proof of Theorem 2 .  Let k be the smallest integer such tlmt T and S have different 
sets of edges of weight k .  Thus, if an edge of G has weight less tl1an k ,  then it 
belongs to T if and only if it belongs to S. Without loss of generality, assume that e is 
an edge of weight k belonging to T but not to S. In S U {e} a cycle is formed by e 
and the unique simple path P joining the vertices of e in S. Every edge on this cycle 
has weight less than or equal to k ,  for otherwise, we could replace some edge of 
greater weight on P by e to obtain a spanning tree with smaller edge sum than S, 
contrary to hypothesis . Some edge on P must not belong to T ,  for otherwise, P U {e} 
would be a cycle in T. Such an edge must have weight k ,  for otherwise its weight is 
less than k and it would belong to T by the choice of k . Choose such an edge f; that 
is, f is on P ,  f does not belong to T and w(f) = k .  Replace f by e in S to get 
another tree S' = ( S -f) U {e} .  Now S' is a minimum spanning tree with one more 
edge in common witl1 T tl1an S. Continue tl1is process (or use induction) to complete 
the proof. D 

Certain elementary results about minimum spanning trees follow effortlessly from 
Theorem 3. Here are two: 
(a) If all the edges of the connected graph G have different weights, then G has exactly 

one minimum spanning tree . 
(b) Every minimum spanning tree in G can be obtained as the output of Kruskal 's 

algorithm. 

4 .  Determinants 

THEOREM 4. A spanning tree in the weighted graph G has the minimum edge sum 
if and only if it has the minimum edge product. 

To help the reader generate the appropriate surprise at tl1is result, we observe that 
it is easy to find a weighted graph with two spanning trees T and S, such that T has 
the smaller edge sum and S has the smaller edge product. The weighted graph in 
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Figure 1b has two such trees, and the reader may enjoy finding them. But if a tree has 
the minimum edge sum, then it must have the minimum edge product, and con­
versely. 

A short proof of Theorem 4 can be had by replacing each edge weight by its 
logarithm. Doing so leaves the order of weights unchanged. Since Kruskal's algorithm 
respects only the ordering of the edges by weight, a spanning tree in G with the old 
weights can be selected by Kruskal's algorithm if and only if that same tree can be 
selected with the new weights . But Kruskal's algorithm generates all the minimum 
spanning trees in G, so the set of minimum spanning trees with the new weights is the 
same as with the old. However, minimizing the edge sum of a tree using the new 
weights is equivalent to minimizing its edge product using the old weights . Thus, 
under the old weights , a spanning tree has the minimum edge sum if and only if it has 
the minimum edge product. 

Another proof, less elegant but perhaps more revealing, uses Kruskal's algorithm 
and· the constancy of the edge weight spectrum. Suppose T has the minimum edge 
product but not the minimum edge sum. Let S be a tree with the minimum edge 
sum. Then the edge weight spectra of T and S disagree. Let k be the smallest weight 
at which they disagree .  

T cannot have more edges of weight k than S .  If  T did have more, we could 
execute Kruskal's algorithm as follows: 

Choose the edges of T .up through weight k - 1 .  (The spectrum of these edges 
agree with the spectrum of S, and so they can be chosen consistently with Kruskal's 
algorithm.) 

Next, choose the edges of T of weight k. (They don't create a cycle with the 
previously chosen edges of T.) 

Finally, finish Kruskal's algorithm in any acceptable way. The result is a minimum 
spanning tree, but it differs from S in the number of edges of weight k .  This 
contradicts Theorem 3. 

So T must have fewer edges of weight k than S. Let T(k )  be the set of edges of T 
with weight less than or equal to k .  Then T(k )  can be chosen at the front end of 
Kruskal's algorithm, and since the spectrum has not yet been used up at weight k ,  
there remains at least one edge e of G of weight k that does not make a cycle with 
T(k ). The edge e does, however, make a cycle with T, and so there is some edge on 
that cycle with greater weight than e. Replace it with e to get a tree with smaller edge 
product, contrary to hypothesis . Thus, if T has the minimum edge product, it has the 
minimum edge sum. 

Conversely, let T have the minimum edge sum. Let S be a tree with the minimum 
edge product. By the preceding paragraph, S has the minimum edge sum as well, and 
therefore has the same edge weight spectrum as T. Thus T has the minimum edge 
product. D 

Returning now to Kirchhoffs determinants , we can quickly see that these algebraic 
objects lead us to the minimum spanning trees of G. 

THEOREM 5. Let H be a set of n - 1 edges of the weighted graph G,  and let M( H )  
be the associated (n - 1) X (n - 1 )  submatrix of A .  Then H is a minimum spanning 
tree if and only if l det M( H ) I  is minimal among all nonsingular (n - 1) X (n - 1) 
submatrices of A. 

To establish this theorem, recall that if H is not a tree,  then det M(H )  = 0, and if 
H is a tree, then l det M(H ) I  is the product of the edge weights of H. Thus, H has 
the minimum nonzero l det M(H ) I  if and only if H is a spanning tree with the 
minimum edge product, and therefore, by Theorem 4, with the minimum edge sum 
also .  D 
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5 .  An algorithm for finding all minimum spanning trees 

To find all the minimum spanning trees of G, we could search the matrix A for those 
submatrices with the minimum determinant. This would require evaluating ( n � 1 ) 
determinants . Fortunately, there are more efficient ways to do this search, which we 
now develop. (The remaining results appear in [6] .)  

We begin by arbitrarily selecting a reference tree :T. Certain edges of G belong to 
some minimum spanning tree while others do not. We can determine which are which 
by referring to :T. 

THEOREM 6. An edge e of G belongs to some minimum spanning tree if and only if 
the following condition holds: 

Either e belongs to !T, or there is an edge f on the unique path in .'T joining the 
vertices of e such that w(f) = w(e) .  

Proof The "if" part is trivial. The "only if" part is  not; a proof appears in [6]. 

Edges that fail to meet this condition can be deleted from G, since their deletion 
does not disconnect G and they will not be chosen in any search for a minimum 
spanning tree. Therefore we assume without loss of generality that all edges of G 
belong to some minimum spanning tree. Next, we partition the edges of G into 
equivalence classes. 

Before defining the equivalence relation, we observe that every equal edge replace­
ment determines a 1-1 function from the edges of T onto the edges of S, where T is 
a minimum spanning tree and S is the tree that results by replacing some edge e of T 
by some suitable edge f of equal weight. This function is the identity on all the edges 
of T except e, and it maps e to f. If Sa , S1, . . .  , Sn is a sequence of minimum 
spanning trees resulting from a finite sequence of equal edge replacements , these 
maps can be composed to give a 1-1 correspondence from the edges of Sa to the 
edges of sn . 

For edges e and f, define e � f if either e ,;  f or there is a sequence Sa , S1, . . .  , Sn 
of equal edge replacements such that e is an edge of Sa , f is an edge of Sn , and the 
image of e under the composition map is f. 

It is easy to see that � is an equivalence relation, but it is harder to determine the 
equivalence classes. Later we show there is a more practical way of describing this 
relation that makes the computation of the equivalence classes easier. 

The reflexive and symmetric properties of � are clear, and the transitive property 
requires only a little attention to tl1e proof of Theorem 2, which can be supplied by 
the reader. 

The graph in Figure 1a provides a simple illustration of this equivalence relation. 
The two edges of weight three on the left are equivalent to each other but not to 
either of the edges of weight three on the right. 

Since every equal edge replacement preserves equivalence classes, we obtain two 
refinements of Theorem 3: 

THEOREM 7. All minimum spanning trees contain the same number of edges from 
any given equivalence class . 

THEOREM 8. An edge is in every minimum spanning tree of G if and only if it is 
related only to itself. 

We now give an elementary algorithm for finding the equivalence classes, using a 
reference tree. It is shown in [6] that the equivalence relation produced by this 
algorithm is the same as the one defined earlier. 
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Recall that the edges that do not belong to any minimum spanning tree have been 
deleted from G. For each remaining edge g not in the reference tree :T, let X( g) be 
the set consisting of g and all edges on the path in :T joining the vertices of g whose 
weight is equal to w( g) .  This set is illustrated in Figure 2, where X( g) = { g , e ,f} . 

_g_ - - - - - -

FIGURE 2 

Combine each pair of sets X( g)  that have an edge in common. Each resulting 
combined set forms one equivalence class .  Thus, each such equivalence class is a 
transitivity class of the sets X( g) .  Edges of G that belong to none of the X( g )  form 
singleton equivalence classes. 

In Figure 2,  X( g )  and X(h) have the edge e in common and are combined. Since 
the edge d, for example, belongs to none of the sets X(c), X( g ), X(h), we see that 
[ d ]  = {d} and d must belong to every minimum spanning tree. 

Since every minimum spanning tree of G must contain the same number of edges 
from a given equivalence class [ e ] , it is reasonable to ask whether any subset of [ e ]  
with that same number of  edges can be  found in  some minimum spanning tree. The 
answer is negative, and a simple example can be found in K4 , the complete graph on 
four vertices, in which all six edges have been assigned the same weight. All the edges 
are equivalent to each other and every minimum spanning tree has three edges, but 
some 3-element subsets are clearly not trees. 

In general, we say that a subset S of [ e] is a choice from [ e] if S is the set of edges 
in [ e ]  in some minimum spanning tree. The main result in [6], which is not obvious , is 
as follows : 

THEOREM 9. If S1 and S2 are two choices from [ e ]  and T is any minimum 
spanning tree of G containing S1 , then (T - S1 ) U S2 is also a minimum spanning tree. 

This theorem guarantees that the choices from a given class are fully interchange­
able, and that the set of all minimum spanning trees in G can be generated 
algorithmically by taking one choice from each equivalence class . In particular, the 
number of minimum spanning trees of G is the product of the numbers of choices 
from all the classes. 

Figure 3 offers an opportunity to execute this algorithm. In Figure 3a, a weighted 
graph is given. Each edge has a letter (its name) and a number (its weight). In Figure 
3b, a reference tree :T(dark lines) has been chosen arbitrarily. Three edges have been 
rejected because they do not belong to any minimum spanning tree (Theorem 6), and 
three others are shown with a dashed line because they do not belong to the reference 
tree . For the three dashed edges c, h and l, find X(c), X(h) and X(l) and observe 
that X(h) and X(l) can be combined. 
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a , l  b , 3 

) , 1 k , l 1 , 3  
c , l d, 3 c - - - - - - - - - - --------· 

m , 3  n , l  p . 2 
e , 4 f, 4 

q , 2  r , 2  s , l 
g , 2 h , 3 h ..... ----· - - - - - - - - - - . 

FIGURE 3 

The equivalence classes are {a ,  c , j , k} ,  {b ,  d, h ,  l} , and six other singleton classes. 
The reader can verify that {a, c , j , k} has four choices , each of which has three edges, 
and that {b, d ,  h ,  l} has five choices, each with two edges .  Each singleton class has, of 
course, only one choice . 

Since there are twenty ways to select one choice from each class ,  G has exactly 
twenty minimum spanning trees. 

For small graphs, this process can be done visually. For larger graphs, determinants 
can be used to identify the choices .  In any event, Theorem 9 greatly increases the 
efficiency of the search. Once the equivalence classes have been found, we can 
determine the choices from any class [ e ] by simply replacing the choice from [ e ] in 
the reference tree !T by another set C of edges from [ e ] with the same cardinality and 
computing the determinant of the new submatrix of A so obtained. If the determinant 
is zero, the set C is not a choice. If the determinant is non-zero, it will have 
± det M(Y) as its value, and thus the set C is a choice. Note that by proceeding in 
this manner, we never waste time evaluating the determinant of a non-minimum 
spanning tree. 

The number of determinants to be evaluated is thus reduced from ( n : 1 ) to 

( :: ) + 
( :: ) + . .  0 

+ 
( :: ) , 

where t1 is the number of edges in the /11 equivalence class E1 , and i1 is the number 
of edges from E1 tl1at belong to the reference tree. 

It is hard to make a general statement about the complexity of this algoritl1m, 
because it depends heavily on the number of equivalence classes and the distribution 
of the edges of G among them. Observe that the complexity decreases as the number 
of equivalence classes increases .  

The graph in Figure 3 has 12 vertices and 14 usable edges. Thus ( n : 1 ) = ( �1 ) = 364 
determinants would have to be computed to find the 20 minimum spanning trees. If 
the algorithm is used, only 

16 = ( : )  + ( � )  + ( u + u ) + u )  +, ( u + ( u + ( i  ) 
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determinants need to be computed to detennine the choices from all the equivalence 
classes. This is overstated, since the reference tree has already identified one choice 
from each class, and so only 8 determinants need to be computed to identifY the 
remaining choices. This improvement must be weighed against the initial effort of 
finding a reference tree and computing the equivalence classes. 
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What i s  the ca l c u l us? 

Most people have heard only o f  "the calculus , "  a slip-shod expression 
applied to the infinitesimal calculus of mathematics invented by Leibniz and 

Newton. That calculus is undoubtedly the most impressive and important 
ever constructed , and we may forgive its admirers for trying to pre-empt 

the word "calculus" as its proper name ; yet this word is too useful to be lost 

from the more general science of logic.  A calculus is, in fact , any system 
wherein we may calculate.  Ordinary arithmetic ,  the system of natural 

numbers with its constituent operations + , x ,  7, and - ,  is a calculus;  the 

famous "hedonistic calculus" of Jeremy Bentham was so named in the fond 
and sanguine belief that this philosophy furnished a system wherein the 

relative magnitudes of the pleasures could be exactly calculated . But as it 

involved no operations upon the elements called "pleasures ,"  it failed to be 
a calculus . 

From Susanne K .  Langer's Introduction to Symbolic Logic, published 
1937; quoted in the February 1940 issue of the National Mathematics Mag­
azine (this Magazine's predecessor) . 
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Introduction In August 1996 the United States Tennis Association (USTA) had a 
problem. They had just conducted the men's draw for the annual U . S .  Open 
toumament, but, contrary to previous years' procedure, the draw was made before the 
seedings were determined for the top 16 of the 128 players . Worse yet, the seedings 
announced did not follow the standard computer rankings for the top players, as had 
long been the policy. Americans Michael Chang and Andre Agassi, for example, were 
ranked third and eighth, but were seeded second and sixth, respectively. Amid 
allegations that the seedings were rigged to promote late-round match-ups between 
high-visibility players, the USTA conceded that this unusual procedure had created at 
least the appearance of impropriety, and agreed to redo the draw, this time after the 
seedings had been announced. 

This unprecedented re-draw did not satisfY all of the critics , pa1ticularly those who 
felt that the seedings favored Americans, but it did quiet talk of a boycott from several 
players . It also raised some interesting questions about probability. In the first draw, 
Andrei Medvedev of the Ukraine was pitted against Jean-Philippe Fleurian of France . 
In the re-draw, these same two unseeded players were scheduled to meet in the first 
round. A USTA official found this a remarkable coincidence, and contacted the 
Department of Mathematics and Computer Science at nearby St. John's University to 
inquire about the probability of such an event. 

I happened to field the phone call . It took some time to determine just what the 
official was asking. For example, consider the difference between the following two 
questions: 

The Easy U. S. Open Question: What is the probability that Medvedev and 
Flemian would be drawn as first-round opponents in both draws? 
The Hard U. S .  Open Question : What is the probability that at least one pair of 
players would be drawn as first-round opponents in both draws? 
The official seemed to be more interested in the first question, whose answer is 

much smaller and much easier to obtain than the answer to the second question. The 
second question tumed out to be subtler than expected. It also brought to mind 
several related questions that were also interesting in their own right-two problems 
tl1at I refer to as the dinner problem and the dancing problem. The dinner problem is 
a generalization of tl1e classical problem of coincidences, first discussed by Montmort 
in 1708. The dancing problem is related to another classical problem, tl1e probleme 
des menages , in which n married couples are seated at a round table . Both problems 
can be defined recursively, and solutions are readily obtained for finite values by 
direct computation. Solutions to the dinner and dancing problems will be used to 
answer the Hard U .S .  Open Problem.  

29 
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The dinner problem I first give the simple version of the problem, and then throw 
in a twist. 

The Dinner Problem ( simple version): Suppose n people are invited to a 
dinner party. Seats are assigned and a name card made for each guest. However, 
floral arrangements on the tables unexpectedly obscure the name cards . When 
the n guests arrive, they seat themselves randomly. What is the probability that 
no guest sits in his or her assigned seat? 

Another equivalent formulation of this problem is the well known hat-check 
problem, in which a careless attendant loses all of the slips and returns the hats at 
random.  The probability that nobody gets his or her own hat is equal to the 
probability in the simple version of the dinner problem .  

We will generalize the dinner problem, for two reasons. First, we will need the 
answer to the more general problem to answer the Hard U . S .  Open question. Second, 
and perhaps surprisingly, the recursion formulas are more easily developed with the 
more general problem. 

The Dinner Problem (with party crashers): Suppose n people are invited to a 
dinner party as before, with the same confusion about the seating arrangement. 
This time k of the n diners are party crashers , where 0 ::::; k ::::; n. (No name cards 
exist, of course, for the party crashers .) Once again, when the n diners arrive, 
they seat themselves randomly at the tables .  What is the probability Pn , k that no 
invited guest sits in his or her assigned seat? 

The simple version of the problem, with no party crashers, asks for Pn , o · 

Recursive formulas for the dinner problem We give the first few cases for small 
values of n and k, and derive the recursive equations. If there is one guest ( n  = 1), 
then she is either invited (k = 0), or not (k = 1) . In the first case she must sit in her 
own seat and p 1, 0 = 0; otherwise, she cannot sit in her own seat, and p 1, 1 = 1 . 

If n > 1 , we can express the probability Pn , k in terms of probabilities involving one 
fewer guests, in one of two ways . If k is positive, then there is at least one party 
crasher. Ironically, it is easier to establish an equation in this case if we abandon all 
pretense towards social fairness and seat a party crasher first . There is no possibility 
that the party crasher will sit in her assigned seat; the probability is � that she will sit 
at a place designated for one of the k absent invitees. If she sits in one of these k 
seats , then the probability that none of the remaining n - 1 guests will sit in his or her 
assigned seat is, by definition, p, _ 1 ,  k - 1 . On the other hand, the probability that she 
will sit in one of the n - k seats assigned to a guest who is present is n : k . In this 
event, then n - 1 guests will remain to be seated, of whom k - 1 are party crashers 
and one was invited-but just had his seat taken by the party crasher who was seated 
first! This invitee no longer has any chance of sitting in his own seat, and so becomes 
indistinguishable from the remaining k - 1 party crashers . Therefore, the probability 
that none of the remaining n - 1 guests will sit in his or her assigned seat is Pn - l, k . 
In summary we have the following reduction formula for n > 1 and k > 0: 

k n - k  
P = - r)  + -- p n , k n n - 1 , k - 1  n n - 1 , k ( 1 ) 
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If there are no party crashers ( k  = 0), we seat one invited guest at random. The 
probability is n : 1 that she will not sit in her own seat, in which case one of the 
remaining n - 1 guests can no longer sit in his own seat. For the problem of seating 
the remaining n - 1 guests , this displaced soul becomes , in essence, a party crasher 
himself. The probability that none of the remaining n - 1 guests will sit in his or her 
assigned seat is therefore Pn - 1, 1 . Thus, the reduction equation for the case where 
there are no party crashers is 

n - 1 
Pn , O  = -n-Pn - 1 , 1 ' 

{2) 
Equations 1 and 2, together with the base cases described above, allow us to generate 
as many of the probability numbers , where 0 :::;; k :::;; n, as patience or computer speed 
will allow. Table 1 gives values for n :::;; 10 . 

TA B L E  1 .  The Dinner Problem Probab il it ies Pn, k >  0 � k � n � 10 

n \ k  0 1 2 3 4 5 6 7 

0 1 .0000 
1 0.0000 1 .0000 
2 0.5000 0.5000 1 .0000 
3 0.3333 0.5000 0.6667 1 .0000 
4 0.3750 0.4583 0.5833 0.7500 1 .0000 
5 0.3667 0.4417 0.5333 0.6500 0.8000 1 .0000 
6 0.3681 0.4292 0.5028 0.5917 0.7000 0.8333 1 .0000 
7 0.3679 0.4204 0.4817 0.5536 0.6381 0.7381 0 .8571 1 .0000 
8 0.3679 0.4139 0.4664 0.5266 0.5958 0.6756 0.7679 0.8750 
9 0.3679 0.4088 0.4547 0.5066 0.5651 0.6313 0.7063 0.7917 

10 0.3679 0.4047 0.4455 0.4910 0.5417 0.5982 0.6613 0 .7319 

8 9 10 

1 .0000 
0.8889 1 .0000 
0.81 1 1  0.9000 1 .0000 

Notice the rapid convergence of the numbers Pn , o  in the first column. Indeed, 
there is a well-known non-recursive formula for these simple dinner problem probabil-
ities (see [2] , [ 4], or [7]) : 

n { _ 1) k 
Pn , O  = L -k-! -

k � O  
s o  that the limit is e - 1 =< 0.3679 . 

The dancing problem In order to solve our Hard U .S .  Open Question, we need to 
double the fun we have had with the dinner problem and consider the dancing 
problem. Again, there will be both a simple version and one with a twist, but this time 
we will have twice as many people to work with. 

The Dancing Problem (simple version): Suppose n married couples (2n 
people) are invited to a party. Dance partners are chosen at random, without 
regard to gender. What is the probability that nobody will be paired with his or 
her spouse? 

Just as dance partners are paired without regard to gender, we do not assume, as 
current laws in most states do, that a married couple must consist of a male and a 
female . 

Again, we answer a simple question by posing a harder, more general one. This 
time, we introduce single guests into the problem.  
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The Dancing Problem (with single people): Suppose n - k married couples 
and 2 k  single people are invited to a party. (That's still 2 n  people. )  Dance 
partners are chosen at random, without regard to gender. What is the probabil­
ity dn, k  that nobody will be paired with his or her spouse? 

The simple version of the problem, with no single people , is to determine dn , o · 

Recursive formulas for the dancing problem We consider the base cases first. If 
there are no guests , then no spouses can be paired, so d0, 0 = l .  If there are only two 
guests ( n = 1), tl1en either they are married, in which case d1 , 0 = 0; or tl1ey are both 
single, in which case du = l .  

To obtain recursive formulas for the dancing problem, we assume that there are at 
least two people invited (n  � 1), and then express dn ,k in terms of probabilities with 
strictly smaller values of n .  If there are any single people (k  > 0), we pair one of them 
first. We select a single person, whom we'll call Sam. Of the remaining 2n - 1 people , 
2k - 1 are single and 2n - 2k  are married. The probability that Sam will be paired 
with another single person is :: :::: � . In that case, tl1e probability of pairing off the 
remaining 2n - 2 people , of whom 2 k - 2 are single, so that no spouses are paired 
together is dn- 1, k - 1 . On the other hand, the probability that Sam will be paired with 

· d · 2n - 2 k  I h. tl . . 2 2 1 . a marne person 1s 2n _ 1 . n t 1s case, 1e remammg n - peop e compnse 
2k - 1 single people, n - k - 1 married couples, and one leftover married person 
whose spouse was paired with Sam.  For the purposes of pairing off the remaining 
2n - 2 people into dance partners , this leftover spouse has become indistinguishable 
from the otl1er single people , since he or she cannot be paired with his or her spouse .  
Sam has , in  effect, broken up this marriage ! Thus, the probability that none of the 
remaining 2n - 2 people will be paired with a spouse is dn -k , k • since there are still 
2k  effectively single people. Putting this togetl1er gives the following reduction 
formula, provided n > 1 and k > 0: 

d = 
2k - 1 d + 2n  - 2k  d . n , k  2n  - 1  n- 1 , k - 1 2n  - 1  n - 1 , k (3) 

If there are no single people ( k  = 0), then we must pair a married person first. The 
probability that this married person will not be paired with his or her spouse is :� :::: � . 
In this case, that leaves 2n - 2 people to be paired as dance partners , including two 
lone people whose spouses were just paired together. Since neither of these people 
can be paired with a spouse, they are considered single for the problem of pairing tl1e 
remaining 2n - 2 people. The probability that none of the remaining 2n - 2 people 
will be paired with a spouse is thus dn - 1, 1 , yielding the following formula, when 
n >  1 :  

d = 
2n - 2 d n , O 2n - 1  n - 1 , 1 · ( 4) 

Once again, we can generate all desired values of dn , k , for 0 .:5: k .:5: n ,  using 
equations (3) and (4), and the base cases derived above. The values for 0 .:5: k .:5: n .:5: 10 
and several values of dn , o for higher values of n appear in Table 2. 

Notice that the sequence of numbers in the first column of Table 2, corresponding 
to the simple version of the dancing problem, does not converge nearly as rapidly as in 
the simple dinner problem. Nonetheless, it does seem to converge to a number strictly 
less than l .  Can you guess the limit? 
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TAB L E  2 The Dan c i n g  Prob l em Probabi l i t ies d,. , k ,  0 :::;; k :::;; n :::;; 10 

n \ k  0 1 2 3 4 5 6 7 8 9 10 

0 1 .0000 
1 0 .0000 1 . 0000 
2 0.6667 0.6667 1 .0000 
3 0.5333 0.6667 0.8000 1 .0000 
4 0.5714 0 .6476 0.7429 0.8571 1 .0000 
5 0.5757 0.6392 0 .7111  0 .7937 0 .8889 1 .0000 
6 0.5810 0.6334 0 .6915 0.7561 0.8283 0 .9091 1 . 0000 
7 0.5847 0.6294 0.6781 0 .7313 0. 7894 0.8531 0 .9231 1 . 0000 
8 0.5874 0 .6264 0 .6683 0 .7135 0 .7623 0 .8149 0.8718 0.9333 1 .0000 
9 0.5895 0 .6241 0 .6609 0.7002 0. 7422 0 .7871 0 .8350 0 .8863 0 .9412 1 .0000 
10 0 .5912 0 .6223 0.6.551 0.6899 0. 7268 0. 7658 0.8072 0 .8512 0.8978 0 .9474 1 . 0000 

100 0 .6050124905 
1000 0.6063790072 

10,000 0.6065154929 
100,000 0.6065291359 

Why the Hard U.S.  Open Question is hard We now have almost all of the 
necessary tools to answer the Hard U . S .  Open Question . We recall that in each draw 
there are 128 players , of whom 16 are seeded; seeded players cannot meet in the first 
round. 

If there were no seedings at all, then we could answer this question directly using 
the dancing numbers dn , k · Imagine pairing up the 128 players into 64 married 
couples according to the first-round match-ups in the first draw. Then we pair up 
dance partners according to the first-round match-ups in the second draw. Having at 
least one pair of players drawn as first-round opponents in botl1 draws would be 
equivalent to having at least one married couple paired as dance partners . This is tl1e 
complement of having no spouses paired as dance partners , so tl1e answer to tl1e Hard 
U .S .  Open Problem, if there were no seedings, would be 

1 - d64 , 0 :;:,; 1 - 0 .604157 = 0 .395843 . 

But then it wouldn't be a very hard problem, would it? 
In addition to the dinner and dancing probability numbers Pn , k and dn , k ' we will 

use a simpler, non-recursive combinatorial formula. Suppose a sample of m people is 
picked at random from a group of n couples . (That's 2n people, with no singles .)  We 
denote by r(n ,  m, k )  the probability that exactly k of the n couples will be included 
in the sample of m people , where 0 :::;; k :::;; lm/2J. 

We leave as an exercise to the interested reader to show that 

( � ) ( ,:�:k )2 m- 2 k 
r( n ,  m , k ) = ....:.......:c....:...__,(,-2-11 )(-----

"' 

Answering the Hard U.S.  Open Question The principal effect of tl1e seedings on 
our Question is that no two seeded players can meet as first-round opponents . Notice 
tl1at tl1ere are two different ways in which players might be paired as first-round 
opponents in both draws . An unseeded player might draw the same seeded opponent 
twice, or he might draw the same unseeded opponent twice . We use the dinner 
problem probabilities to address the first issue, and the dancing number probabilities 
for tl1e second. Of the 128 players , 16 are seeded and 1 12 are unseeded. Of the 112 
unseeded players, 96 are initially lucky because they drew unseeded opponents in  the 
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first draw. The answer to the Hard U . S .  Open Question will depend on how many of 
these 96 "lucky" unseeded players happen to draw a seeded opponent in the second 
draw. We let m denote the number of unseeded players who drew an unseeded 
opponent in the first draw, but a seeded opponent in the second draw. These players 
were thus rather unlucky, and most likely none too pleased with the decision to 
remake the draw. 

This integer m can range in value from 0 to 16. Let Em denote the event described 
above, that exactly m unseeded players drew an unseeded opponent in the first draw, 
but a seeded opponent in the second draw. The probability that the event Em occurs 
is given by 

The denominator counts all possible ways of picking 16 unseeded players to play 
against seeded players in the second draw. In the numerator, of the 96 unseeded 
players who drew unseeded opponents in the first draw, we choose m of them to have 
seeded opponents in the second draw. Then, of the 16 unseeded players who drew 
seeded opponents in the first draw, we choose 16 - m of them to have seeded 
opponents again in the second draw. (These are the doubly unlucky unseeded 
players !) 

Now, suppose that the event Em occurs . The probability that, of the 16 - m  players 
who drew seeded opponents twice, none of them drew the same seeded opponent in 
both draws is exactly the dinner problem probability number p 16, m ·  To see this, think 
of the seeded players as the place settings in the dinner problem.  The 16 unseeded 
players who drew seeded opponents in the first draw are the invited guests , whose 
(hidden) name cards are at the place settings corresponding to their seeded opponents 
in the first draw. The m unseeded players who drew unseeded opponents in the first 
draw, and seeded opponents in the second, are the m party crashers , since they 
cannot be matched with the same opponent twice . The 16 - m players who drew 
seeded opponents in both draws are the invited guests that actually made it to the 
dinner party. 

Now we consider the possibility that two unseeded players were chosen as first-round 
opponents in both draws . Continue supposing that event Em occurs . Of the m players 
who drew an unseeded opponent in the first draw and a seeded opponent in the 
second draw, suppose that k pairs of them were scheduled against each other as 
opponents in the first draw. The probability of this event is given by the number 

discussed earlier, where 0 :s;; k :s;; lm/2]. 
To summarize, we are supposing that event Em occurs ; that is ,  that there are m 

unseeded players who drew an unseeded opponent in the first draw and a seeded 
opponent in the second draw; and that of those m players , k pairs of them were 
scheduled as opponents in the first draw. Given those conditions, what is the 
probability tl1at, of the 96 - m unseeded players who drew unseeded opponents in 
both draws, no two were scheduled against each other in both draws? The answer, of 
course, is the dancing problem probability number d48, m - k . 
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How i s  that? Marital status i s  determined by how the players were matched up in 

the first draw, while dancing partners are chosen by the match-ups in the second 
draw. There are 96 unseeded players who drew unseeded opponents in the first draw. 
These 96 people represent 48 originally married couples in the dancing problem, 
paired by their scheduled opponents in the first draw. Of these 96 players, m drew 
seeded opponents in the second draw. These m players represent some, but not all, of 
the single guests, since they cannot be matched with their "spouses" in the second 
draw. Now, since we are assuming that k pairs of those m players were paired up in 
the first draw, m - 2 k  of these m players' first-draw opponents (spouses) must have 
drawn unseeded opponents in the second draw. These m - 2k  spouses are effectively 
single as well, since they cannot be matched with their first -draw opponents in the 
second draw. This gives a total of m + ( m - 2k )  = 2( m - k)  single people out of 
2 · 48 = 96 guests . The probability that no two of the 96 players will be paired together 
in both draws is thus d48, m-k . 

The answer to the Hard U.S.  Open Question To answer the Hard U .S .  Open 
Question at last, we add up the probabilities for each of the possible values of k ,  
0 ::;; k ::;; l m /2J, for each o f  the possible values o f  m , 0 ::;; m ::;; 16 . Thus,  the probability 
that no two players would be drawn as first round opponents in both draws is 

16 ( [m/2 J ) m�O 
P ( Em) P 16 , m k�O 

r (48 , m , k ) d4a , m -k """ 0 . 5983933573 .  

A computer algebra system can give the exact answer in rational form. Curiously, in 
this case it is a (reduced) fraction of integers , each with exactly 100 digits . 

The probability that at least one pair of players would be drawn as first-round 
opponents in both draws is, accurate to ten decimal places ,  1 - 0.5983933573 = 

0.4016066427. 
Recall tl1at if there were no seedings the answer would have been 1 - d64• 0 """ 

0 .395843, which is fairly close to the actual answer. 
How does our answer to the Hard U .S .  Open Question compare to tl1at of the Easy 

U .S .  Open Question: "What is the probability that Medvedev and Fleurian would be 
drawn as first-round opponents in both draws?" We leave it to the interested reader to 
show that the answer is 

( 2 )2 4 1 
259 = 67,081 = 16 ,770 .25 """ 0 ·00005963 · 

Conclusions It is indeed quite improbable that any two particular players would be 
drawn as first-round opponents in both draws. This is in dramatic contrast to the 
answer to the Hard U .S .  Open Question, where we saw that there is a greater tl1an 
40% chance that at least one pair of players will be drawn as first-round opponents in 
both draws. What I find most surprising is not the disparity in the two answers, but 
the subtlety required to answer the Hard U .S .  Open Question. Along the way, we 
explored two related problems and developed formulas for each of them. It is 
remarkable that in the simple versions of botl1 of these problems, the probabilities do 
not converge to either of the extreme values, 0 or 1 , as the number of guests increases 
without bound. In the simple version of the dinner problem, the probability ap­
proaches e - 1 z 0.3679, and the convergence is quite rapid. In the simple version of 
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the dancing problem, we conjecture that the probability converges to � = 

0.606530659. Finally, we leave the interested reader with a few problems to explore. 

1 .  Determine the probability that exactly k pairs of players will be selected as 
first-round opponents in both draws, for 0 � k � 64; then calculate the expected 
number of repeated pairs . 2. Find a non-recursive formula for the simple dancing problem probabilities, dn , o · 

3. Prove (or disprove) that lim 11 _, ood, 0 = � .  · ve 
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Var iat ions  on  a Theme:  A4 Defi n i te l y  
Has No Su bgrou p of Order S i x !  

M I C H A E L  B R E N N A N  
Cork I n st itute of Techno logy 

Cork, I re land 

D E S  M A C H A L E  
U n ivers ity Col l ege 

Cork, I re land 

Introduction To obtain one valid proof of a theorem is an achievement, but there 
may be many different proofs of the same theorem. For example, there are said to be 
over 370 of Pythagoras's theorem. Once a result has been proved, the story seldom 
ends . Instead the search begins for refined, reduced, or simplified proofs. 

It is just as important to have a collection of different approaches to proving a given 
result as it is to have a collection of different results that can be derived using a given 
technique. An advantage of this attitude is that if one has already proved a result using 
a certain technique, then a different method of proving the same result may 
sometimes yield a generalization of the original result which may not be possible with 
the original technique of proof. We illustrate this phenomenon by examining various 
proofs of the fact that A4 ,  the alternating group on four symbols , has no subgroup of 
order six. 

Preliminaries One of the cornerstones of theory of finite groups is the following 
theorem of the Italian mathematician J. L. Lagrange (1736-1813): 
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LAGRANGE's THEOREM.  If G is a finite group with I G I = n and H is a subgroup of G 

with I H I  = d, then d is a divisor of n .  

Lagrange stated the theorem for the special case where G was a subgroup of  the 
symmetric group S11 which arose out of his study of the permutations of the roots of a 
polynomial equation.  The theorem as stated above was probably first proved by Galois 
[9] around 1830. 

Is the converse true? 

CONVERSE TO LAGRANGE's THEOREM.  If G is a finite group with I G I = n, and d is a 
divisor of n ,  then G has a subgroup of order d. 

It is well known that this converse is false, �md that a counterexample of smallest 
order is provided by A4 , the alternating group on 4 symbols . This group of order 12 
has no subgroup of order 6 .  We write A4 as the group of all even permutations on the 
four symbols { 1 ,  2, 3, 4} . 

A4 = { e ,  ( 12) ( 34) , ( 13) (24) , ( 14) ( 23) , ( 123) , ( 132) , 

( 124) , ( 142) , ( 134) , ( 143) , ( 234) , ( 243) } 

We now present eleven elementary proofs of the fact that A4 has no subgroup of 
order 6. Several attempts [2, 4, 6] at presenting the "simplest" or "best" proof of 
showing that A4 has no subgroup of index 2 have recently been made . Since notions 
like "best" or "simplest" proof are subjective , we present a range of possible 
candidates . All eleven proofs involve only elementary concepts from group themy: 
cosets , element orders , conjugacy classes, normality, isomorphism classes, commutator 
subgroup, cycle structure . The variety of topics that arise is a valuable review of basic 
group theory! 

Proofs of the falsity of the converse Let H be an alleged subgroup of A4 of 
order 6 .  Each proof following implies that such an H cannot exist. Of course ,  the 
most simple-minded approach is to look at all ( 1: ) = 924 subsets of A4 and show that 
none of them forms a subgroup . However, as Proof 1 illustrates ,  this number can be 
halved immediately. 

Proof 1. (Basic but crude) 
H must contain the identity element e, so H has five nonidentity elements . There 

are ( 1; ) = 1� :;������7 = 462 possible subsets to consider. We leave it for the reader to 
check that none of these 462 subsets is closed under composition of cycles .  This is an 
arduous task to undertake by hand but quite feasible for a computer where the Cayley 
table for A4 has been entered. Paradoxically, this crude approach forms the basis of a 
later proof which we nominate as the "simplest" but not "easiest" proof of the 
converse. 

Proof 2.  (Using cosets) 
Since H has index 2 we have A4 = H U Ha for all a E A4 \ H. Consider Ha2 ; now 

Ha2 = H or Ha2 = Ha. If Ha2 = Ha, then Ha = H by cancellation and a E H, a 
contradiction. Thus Ha2 = H ;  but Hh2 = H for all h E  H and so Hg 2 = H for all 
g E A4 . Thus g 2 E H for all g E A4 • By direct calculation A4 has nine distinct 
squares, so I H I  � 9, contradicting I H I  = 6. 
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Proof 3. [4] (A variation of Proof 2) 
As in Proof 2 we have g 2 E H for all g E A4 • If a3 

= e then a2 = a - 1 , so 
a2 E H = a - 1 E H = a  E H. But this would mean that H contains all eight elements 
of order 3 in A4 , which is a contradiction. 

Proof 4. (Using normality) 

A subgroup of index 2 is also a normal subgroup. Hence H <I A4 and the factor 
group A4/H is a cyclic group of order 2. Thus H = (Hg )2 = Hg2 for all g E A4 ,  so 
g 2 E H. We finish the proof using the same argument as in Proof 2. 

Proofs 2, 3, and 4 display the characteristic that was mentioned in the introduction; 
they generalize easily to yield the following result. 

THEOREM .  Let G be a finite group of even order and suppose that more than half 
the elements of G have odd order. Then G has no su_bgroup H of index 2 . 

This result implies that the direct product A4 X en , where en i s  the cyclic group of 
odd order, has no subgroup of index 2. Thus there exists a counterexample to the 
converse of Lagrange's theorem of order 12n for each odd integer n .  
Proof 5. (Using conjugacy classes) 

The conjugacy classes of A4 are 

{ e } , { ( 12) ( 34) , ( 13) (24) , ( 14) ( 23) } , { ( 123) , ( 124) , ( 134) , ( 234) } , 
{ ( 132) , ( 142) , ( 143) , ( 243) } 

with cardinalities 1, 3, 4, and 4 respectively. Since H has index 2, H is a normal 
subgroup of A4 and so H must consist of complete conjugacy classes, one of which 
must be {e} . But it is clearly not possible to make up the 5 remaining elements with 
sets of size 3 and 4. Hence H does not exist. 

Proof 6. (Using isomorphism classes) 
Since \ H \  = 6, H must be isomorphic to one of the following groups; S3 , the group 

of all permutations on 3 symbols {a ,  b ,  c} or e6 the cyclic group of order 6. Since A4 
clearly has no element of order 6 the latter possibility is ruled out. Hence H ::::: S3 • 
Now S3 has exactly three elements of order 2, namely X =  {(ab), (be), ( ac)} and A4 
(and hence H) has exactly three elements of order 2, given by Y = 
{(12)(34), (13)(24), (14X23)} . The isomorphism, which preserves the order of an ele­
ment, must map Y onto X. But the elements of Y commute pairwise whereas no two 
distinct elements of X commute. This contradicts a property of isomorphisms and 
hence these groups cannot be isomorphic. We conclude that H does not exist. 

Proof 7. (Variation on Proof 6) 
H ::::: S3 implies that H contains the three elements of A4 of order 2, and therefore 

H contains V = {e ,  (12)(34), (13)(24), (14)(23)} . But V is a group of order 4 and 4 does 
not divide 6, contradicting Lagrange's theorem. 

Proof 8. (Using the commutator subgroup) 
Since H is a subgroup of index 2, H <I A4 and tl1e factor group A4/H is an abelian 

group of order 2. Thus H ;::2 A'4 where A'4 denotes the commutator subgroup. A little 
computation shows that A'4 = {e ,  (12)(34), (13)(24), (14)(23)} . As in Proof 7, 4 does not 
divide 6, again contradicting Lagrange's theorem. 

Proof 8 offers an easy alternative proof of the result of Mackiw [9] that the group 
SL(2, 3) (the group of all 2 X 2 invertible matrices of determinant 1 with entries in Z3) 
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of  order 24 has no  subgroup of  order 12 .  I f  K i s  such a subgroup, then K <I SL(2, 3) 
and since the factor group SL(2, 3) / K is abehan, K -;;;2 SL(2, 3)' , the commutator 
subgroup. But it is easy to see that I SL(2, 3)' 1 = 8 and we get a contradiction since 8 
does not divide 12. 
Proof 9. (Using nonnal subgroups) 

The group V = {e , (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4 as is the 
subgroup H. Since HV contains V properly and V is a maximal subgroup we must 
have HV = A4 . By a well known result [9], 

I H I I V I  6 X 4 12 = I  A4 1 = I  HV I =  I H  n V I = 12 = I H  n vi · 
Hence I H n V I = 2. But this is a contradiction since A4 has no normal subgroup of 
order 2, as is easily checked. 

In the final two proofs all that is used is the closure property, i . e . ,  if a, b E H then 
ab E H.  
Proof 10. [1] (Using order of  an element) 

Since e E H there is space only for five remaining elements in H.  The elements of 
A4 are either of order 2 or of order 3. Elements of order 3 occur in pairs and hence 
we must have an even number of elements of order 3 in H. Since A4 has eight 
elements of order 3 and only three elements of order 2, H must contain at least one 
element of order 3, and, because elements of order 3 come in pairs ( p and p2), there 
are two possible cases to consider. 

Case I. H contains four distinct elements of order 3, say p, w, p2, w2. 
In addition to the above four elements and the identity we would also get the 

distinct elements pw and pw2• Note that pw =/= p, w, p2 or w2 since otherwise, by 
cancellation we get that w = e, or p = e or p = w, all of which are false .  Similarly the 
element pw2 is distinct from the six elements e, p, w, p2, w2, pw. Hence I H I  � 7, a 
contradiction. 

Case II. H contains exactly two elements of order 3, say p, p2 
This would mean that H contains e and the 3 elements of order 2, which form a 

subgroup of order 4, contradicting Lagrange's theorem. 

We contend that the final proof is possibly the most elementary of all the proofs in 
that it utihzes only the closure property. It does involve a bit of computation but the 
number of cases to check is far more manageable than in Proof l .  
Proof 1 1 .  Partition G into " p ackets " as fo llows { ( e )} ,  { ( 1 2)(34)} , 
{(13)(24)} {(14)(23)} , {(123), (132)} ,{(124), (142)} , {(134), (143)}, {(234), (243)} . Note tlmt 
by closure, H must contain all the elements of a packet or no element of a packet. 

Now e E H so H is made up of either 

(i) three 1-packets and one 2-packet and e; or 
(ii) one ! -packets and two 2-packets and e .  

This gives ( �) · ( � ) + 
U) · ( : ) = l · 4 

+ 
3 · 6 = 22 sets to be checked for closure . In 

each of the 22 sets , elements a and b can be found such that ab $. H. Hence no such 
H exists . 

We remark that in several textbooks [3, 5, 7], the problem of disproving the 
converse to Lagrange's theorem is often relegated to an exercise. Sadly sometimes the 
proof is dismissed with the words "It can be shown," "As one can easily see," "It will 
be found." Other texts offer proofs that involve comphcated arguments [10] . We 
invite readers to add to the above hst of elementary proofs or variations of proofs .  
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Introductory courses in undergraduate analysis usually include a proof of the fact that 
the rational numbers are countable. In a note appearing in 1986 [1 ] ,  Campbell 
presents an alternative to the usual diagonalization argument. Touhey's proof in the 
1996 article [4] proceeds along similar lines .  In both of these papers , two sets are 
declared to have the same cardinality if each can be mapped in a one-to-one manner 
into the other. Most sources refer to this condition as the Cantor-Bernstein Theorem 
[5, p .  103] or the Schroder-Bemstein Theorem [2 , p .  99; 3, p. 74], a deeper result 
that may not appear in an introductory analysis course .  

In this note , I state a principle of countability and illustrate how it may be applied 
both to argue the countability of some familiar sets and to prove two well-known 
general results about countable sets . The main difference between the present 
approach and that in [1 ]  and [4] is that, here, countability is established without any 
mention of Cantor /Schroder-Bernstein, but rather by appealing to the definition of, 
and an elementary result about, countable sets . The function defined in establishing 
the principle here is also slightly more general . The principle is likely part of the lore 
of tl1e subject of infinite sets, but it certainly deserves to be better known. It appears 
in no textbook from which I have studied or taught. The underlying idea was shown to 
me in graduate school by Professor John L. Troutman at Syracuse University. 

A set S is called finite if, for some natural number n ,  there is a one-to-one, onto 
function between S and the initial segment { 1 ,  2, . . .  , n} of the set of natural numbers 
N .  If there is a one-to-one, onto function between S and tl1e set N,  then S is called 
countably infinite . A set that is either finite or countably infinite is said to be 
countable . 

The main ingredients of the result that follows are a fixed, finite base set, called the 
alphabet , tl1e elements of which are called letters, and the words tl1at may be formed 
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approach and that in [1 ]  and [4] is that, here, countability is established without any 
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N .  If there is a one-to-one, onto function between S and tl1e set N,  then S is called 
countably infinite . A set that is either finite or countably infinite is said to be 
countable . 

The main ingredients of the result that follows are a fixed, finite base set, called the 
alphabet , tl1e elements of which are called letters, and the words tl1at may be formed 
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using the letters o f  the alphabet. A word i s  formed by juxtaposing letters o f  the 
alphabet to form a formal string of finite length. (Words may have repeated letters . )  
With this vocabulary in place, the principle i s  as  follows : 

PRINCIPLE OF COUNTABILITI. The set of all words that may be formed using letters 
of a finite alphabet is countably infinite . Hence, any set of words that may be so 
formed is countable . 

To sketch a proof of this p1inciple, suppose the alphabet A consists of r letters , 
r E 1\J .  For each n E 1\J,  let En be the set of all words of length n that are obtainable 
using letters from A. Then En is a finite set consisting of r n words, so there is a 
one-to-one function f1 mapping the set E1 onto the initial segment {1 , 2, . . .  , r} , a 
one-to-one function f2 mapping the set E2 onto the next segment { 1 + r, 2 + r, . . .  , r 
+ r 2} of length r 2 , and so forth. For each n ;::: 2, the function fn maps the set En 
onto the segment 

{ 1 + r + r2+  . . . + r " - 1 , 2 + r + r2 + . . .  + r " - 1 , . • . , r + r2 + . . . + r " - 1 + r 11 } , 

of length r" .  But then the union of these functions U n E t\1 f., provides a one-to-one 
function from the set un E t\1 Ell onto 1\J; this shows that the set of all words that may 
be fonned from a finite alphabet is countably infinite . It is elementary that a subset of 
a countable set is countable (see, e .g . ,  [2, p. 19]), so the second assertion is immediate . 

The quintessential feature of a set C that is known to be countable is that its 
members may be identified with words that are formable from the alphabet 
{c , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Specifically, the membership of C may be listed in a roster, 
which has the form C = {cl ,  c2 ,  c3, . . .  } if C is infinite . The principle says that the set 
of all possible words that may be formed from this alphabet is countably infinite . 
Thus, elements of C constitute a distinguished subset of a larger countably infinite set 
that includes such elements as 3ccl4, for example . Moreover, the principle serves as a 
sort of converse to this quintessential feature, and so provides a characterization of 
countable sets : A set C is countable if and only if its elements may be identified with 
words that are formable using letters from a finite alphabet. 

Examples We will use the principle to show that the following sets are countable : 
(i) the set Q of rational numbers; (ii) the set Q[ x ]  of polynomials with rational 
coefficients; (iii) the set S of surds . 

By the principle of countability, the set of all words that may be formed from the 
alphabet A 1 == {0, 1 ,  2, 3, 4, 5, 6, 7, 8, 9,/, - } is countable . The set Q consists of objects 
of the form ajb ,  where a and b are integers and b =I= 0; it may be identified in an 
obvious way with a subset of all the words that may be so formed. Thus Q is countably 
infinite . 

The members of the infinite set Q[ x ]  can be thought of as words formed from the 
alphabet A2 = = {0, 1 ,  2, 3, 4, 5, 6, 7, 8, 9, x ,  + ,  - ,  /} . For example, the polynomial x 2 
+ �x - 5 may be represented by the word x 2  + 2j3x - 5. Hence Q[ x ]  is countably 
infinite . 

Surds are numbers that can be built using rational numbers and the basic 
operations of addition, subtraction, multiplication, division, and extraction of roots 
(see, e .g . ,  [3, p. 38]) . Thus any surd may be viewed as a word that may be formed 
using letters from the alphabet A3 = = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + ,  - ,  /, (, ) , [ , ] ,  J} . For 

example, the surd V 1 + 1� may be identified with the word J(1 + [ 12]J(2/3)). 
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The countability principle is also of theoretical interest; we apply it to prove the 
following theorem: 

THEOREM. 

(1) A finite Cartesian product of countable sets is countable. 
(2) A countable union of countable sets is countable . 
Proof For (1), let S1 , 1 :::;;,j ::::;;, n ,  n E 1\J ,  be a collection of countable sets . Thus, for 

each 1 :::;;,j ::::;;, n ,  there exists a one-to-one function Jj from either an initial segment of 
1\J, or from 1\J itself, onto SJ ' An element of the Cartesian product S1 X S2 X · · ·  X Sn is 
thus an n-tuple (f1(m 1 ), j2(m 2 ) , . . . , f/mn)), where m1 E 1\J and 1 :::;;,j ::::;;, n. Every 
such element is identifiable as a word that may be formed using letters of the alphabet 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, f, ( , ), , } . (Note that this alphabet consists of 14 letters , one of 
which is a comma.) Thus, the principle of countability ensures that the set S 1 X S2 

X . . .  X Sn is countable .  
For (2), we have either a finite collection s1 , 1 :::;;,j ::::;;, n ,  or a countably infinite 

collection Si , j E 1\J, of countable sets . In either case, for each index j there exists a 
one-to-one function Jj from either an initial segment of 1\J,  or from 1\J itself, onto S1 . 
Now, any element of U1 S1 may be expressed as fk(m), for k E 1\J (of least index) and 
some m E  1\J .  Every such element is thus identifiable as a word that may be formed 
from the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, f, ( , )} , so the principle of countability en­
sures that the union U 1 s1 is countable .  

Extensions The countability principle fails if  one permits words of countably 
infinite length. In this case, the set of all words that may be formed from any finite 
alphabet with more than one letter is uncountable. For example, the set of all words 
formable from the finite alphabet {0, 1} contains the uncountable set of all infinite 
sequences of O's and 1's .  

On the other hand, if one permits a countably infinite alphabet, but requires that 
words have finite length, then, as in the principle, the set of all formable words is 
countable. To see this, let A denote the countably infinite alphabet, and observe that 
the set En of words of length n that may be formed from A may be identified with 
the n-fold Cartesian product An = A X A X . . .  X A. Part (1) of the theorem ensures 
that An is countable for each n E 1\J. But then U n E t\1 An is the set of all words 
formable using letters of A, so part (2) of the theorem ensures its countability. 
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Math B ite: The Dagwood Random Nap 

By tossing the coin only enough times for a majority of the outcomes to show heads , 
Dagwood has encountered a first-passage problem for random walk. 

To formulate the random walk model corresponding to "steps" up and down with 
equal probabilities, assume X1 , X2 , . . .  are obtained from independent and identically 
distributed Bernoulli trials, each with success probability 1/2, so that Prob ( X; = + 1) 
= Prob ( X; = - 1) = 1/2. The corresponding (symmetric) simple random walk is then 
Sn = X1 + X2 + · · · + Xn , n = 1, 2, . . . .  

Because Sn records the difference between the number of heads and the number of 
tails observed in the first n tosses, Dagwood's first passage problem then involves the 
random time 1(1} = min{n :2: 1 1 Sn = 1}. Observing that the event { Sn = 1} can occur 
only for an odd number of tosses, we wish to calculate Prob (1(1} = 2n - 1) and 
Prob (1(1} > 2n  - 1) for n = 1, 2, . . . .  

Explicit first-passage solutions are given for n :2: 1 by 

( ) 1 ( 2 n - 1 ) 1 Prob 1(1} = 2n - 1 = 2n _ 1 n 22n - 1 ; 

Prob (1(1} > 2n  - 1) = ( 2nn ) 2!n . 

These formulas show that Prob (T{l} = 9) = 14 X 1/29 ::::: 0 .027 and Prob (T{l} > 9) = 

252 X 1/210 ::::: 0 .246. The (perhaps more relevant) second probability figure shows 
that nearly one in four Dagwood naps would require more than 9 coin tosses . 

The first-passage probability solutions can be derived either from the analytic 
treatment in [1 ,  p .  76-77] or the insightful geometric argument in [2]. Finally, it can 
be shown that a Dagwood random nap is indeed certain, but that the expected 
number of tosses is infinite [ 1 ,  p. 272] . 
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A Comb i nato r i a l  Approach 
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Introduction The fact that SP(n) := L.k= l k P ,  the sum of the p th powers of the first 
n positive integers , can be written as a polynomial in n for any positive integer p is 
certainly not a state secret. This topic has been treated extensively over the years from 
various perspectives ,  with [1 ] ,  [3], [5], [6], and [7] examples of recent contributions. 

Evidence provided by small values of p, such as L.k= l k = n(n2+ 1) and L.k= l P 
= n(n + 1�(2 n + 1) , makes this fact plausible even to the beginner and might also spark 
the conjecture that the resulting polynomial should have degree p + l .  Proofs that 
validate this or produce a polynomial expression for L.k. = 1 k P often tend to use 
mathematical induction or recursion. Valuable though they are, such inductive or 
recursive techniques can sometimes disguise underlying motivation and perhaps leave 
a reader with a vague feeling of not having grasped the heart of the matter. 

In this note we offer a combinatorial interpretation of S/n) that can serve to 
motivate why this sum can be expressed as a polynomial of degree p + 1 in the 
variable n .  Our approach allows us to make some general statements about coeffi­
cients of this polynomial and also produces a technique for direct calculation of the 
polynomial . We show that calculating this polynomial can be accomplished by solving 
a ( p - 4) X ( p - 4) lower triangular system of linear equations . Our exposition 
requires only the ability to use binomial coefficients in basic counting arguments . 

A combinatorial interpretation A common technique in combinatorics is to count 
something in two different ways and equate the answers , thus deriving an identity. 
Here, we search for a set of objects with cardinality S/n). We choose the set of those 
vectors ( x 1 , x 2 , . . .  , x p + 1 ), with positive integer components , satisfying 

1 .::; x i .::; n + 1 ,  i = 1 ,  . . .  , p + 1 and x 1 > x i , i = 2 ,  . . .  , p + l .  
For any fixed allowable value of x 1 , say x 1 = j ,  there are clearly (j - 1) P vectors 
satisfying the above condition, with x 1 = j. Since x 1 can be any integer between 2 and 
n + 1, there are a total of L.j:;: J: (j - 1) P = L.k = 1 k P such vectors. 

An alternative way of counting these vectors is to focus on the number of distinct 
positive integers among the components , x 1 , x 2 , • . .  , x p + l ' How many vectors have all 

p + 1 components distinct? There are ( ; : � )  ways of choosing the integers that will 

occupy the components . Since the only requirement is that the largest of these 
integers occupy the first position, all p! permutations of the remaining integers can be 

used to fill in the other components . There are thus ( ; :  � )p !  such vectors . 
The number of vectors with p distinct integers among their components is ( n ; 1 ) ( P � 1 ) �� , since, of the p - 1 integers available for positions 2 through p + 1 ,  

one of these must be chosen to be repeated twice, and the resulting collection of 

integers with repetition can be permuted in �� ways . 
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When counting vectors having p - 1 distinct integers among their components , we 

must distinguish between the two ways this can happen: either one integer is repeated 
three times in the last p positions, or else two different integers each occur twice . 
Keeping this in mind, we count 

( n + 1 )  [ (  p - 2 )  E.l, + ( p - 2 )  L] 
p - 1  1 3 !  2 2 ! 2 !  

vectors of this type. 
While it is difficult in general to write down a closed form expression for the 

number of vectors having t distinct integers among their components , our argument ?oes show that this number is of the form ( n ;  1 )ct , where ct is a non-negative 
mteger. 

Combining our two points of view, we see that 

n ( 1 )  P ( ) 
- P - n + 1 n + 1 Sp ( n) - E k - + 1 p . + L ct t , 

k = 1  p t = 2  

for some integers ct . (There is no term corresponding to t = 1 , since the vectors being 
counted must contain at least two distinct integers .) Note that we have already 
determined the values of cP and cp - I · Our work so far allows us to make the 
following observations: 

l .  Viewed as an expression in n, ( n ; 1 ) is a polynomial of degree t .  Also, the 

coefficient of n p + l in the expansion of ( ; : � )p ! is P � 1 . It follows that S/n) is a 

polynomial in n of degree p + 1 with rational coefficients and leading coefficient 
1 

p +  1 .  
2. Since, for 2 ::::;; t ::::;; p + 1, ( n ;  1 ) contains the term n(n + 1), we see that S/n) 

always has n(n + 1) as a factor. Our first two observations combine then to force 
the familiar result S1(n) = n(n + 1)/2. 

3. The coefficient of n P in S/n) is always � · This can be readily seen by computing 

this coefficient in ( ; : � )p ! + ( n ; 1 ) ( P � 1 ) �! . 
Thus , for example, we must have S2(n) = �n3 + �n2 + en, for some integer c . 
Since S2(1) = 1 , we solve for c and find that S2( n) = �n3 + �n2 + in . 

Direct calculation Our approach will permit direct calculation of the polynomial 

provided we can effectively calculate the various integers ct . Recall that ct is the 
number of vectors having p components that are possible if we insist that the entries 
come from t - 1 previously chosen integers . Thus, it is always the case that c2 = l .  

Also, we have already shown that 

c = 
( n + 1 ) [ ( p - 2 ) E.l_  + ( p - 2 )L] . 

p - l p - 1  1 3 !  2 2 ! 2 !  

We will use the case p = 6 to illustrate how to find the remaining c/s. 
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Now, 

s6( n) = ktl k 6 = ( 
n
; 

1 ) 6 ! + ( 
n � 1 ) (  � )  �: + ( 

n
; 

1 ) [  ( i )  �: + ( : ) 2f�d 

+ c4 ( 
n 1 1 ) + c3 ( n ; 

1 ) + ( n ; 
1 ) . 

An interesting way to find c3 would be to replace n by 2 in the above equation and 
take advantage of the fact that the binomial coefficient ( � ) is zero whenever b is 

greater than a, while ( � )  = l .  The result is c3 = S6(2) - U )  = 16 + 26 - 3 = 62 . 

Similarly, letting n = 3, we get c4 = S6(3) - ( � )c3 - ( : ) = 540. If desired, we can 
expand binomial coefficients and collect terms to arrive at 

In general, replacing n successively by 2, 3, . . .  , and p - 3 in our expression for 
S/n) will produce a system of linear equations in the unknowns c3 , c4 , . . .  , cp _ 2 . 
Since c1 occurs multiplied by ( n ; 1 ) , this ( p - 4) X ( p - 4) system is lower triangu­
lar, with ones on the diagonal. Solving it will yield a polynomial expression for S/n). 

Concluding remarks In the article [6] ,  Paul also uses a counting argument 
involving lattice points , though the set of points counted and the conclusions drawn 
differ from those in this note . The topics discussed here are linked to many interesting 
developments in the history of computation. James Bernoulli (1654-1705) worked on 
the problem of finding formulas for sums of p th powers of integers , in the process 
constructing what we now term Bernoulli numbers [8]. Also, the coefficients c1 
introduced above are close relatives of another famous sequence of numbers , the 
Stirling numbers , S(n ,  m), of the second kind, which count the number of ways to 
partition a set of n elements into m nonempty subsets ([2], [4]). 

Acknowledgment. The author thanks the editor and referees for their valuable suggestions. 
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Rou nd i ng E rrors to Knock You r  Stocks Off 
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Introduction As the total value of all daily stock transactions on the Vancouver 
Stock Exchange kept rising in 1982 and 1983, the exchange's index kept falling. How 
could this be happening? 

The cause of the divergence between the mathematical and computed averages 
consisted in an erroneous algorithm to round the last digits during the computation of 
the index. Public documents , e .g. , Quinn's article [2] include the following pieces of 
information. The index is the arithmetic average of the selling prices of the nearly 
1400 stocks listed on the Vancouver Stock Exchange. The computation of the index 
started in January of 1982, with the index then pegged to 1000. In about November of 
1983, exchange officials estimated that the index should have been at least at 900 and 
perhaps above 1000, but the computed value of the index was down near 520. The 
index was computed every time the price of a stock changed, which occurred about 
2800 times per day. The computer carried a total of eight decimal digits during the 
computation, but it truncated the last two digits to display and record the index with 
only three decimal digits past the decimal point. Thus, if it computed the value 
540.32567, then it would record 540.325 for the index. 

The magnitude of the discrepancy-about 520 instead of 1000 or so-indicated 
that the cause involved more than only an erroneous rounding of an otherwise correct 
computation. Indeed, with a computer carrying eight decimal digits, the relative 
rounding error caused by each addition cannot exceed one half of one unit in the last 
digit, which is (1/2) X 10 1 - 8 .  In the worst case, if all 1399 additions of all 1400 stock 
prices suffered from the maximum relative error, errors would compound to at most 

[ 1 7 ] 1399 - 4 1 + 2 X 10 - 1 = 0 .000 069 952 . . .  < 10 , 

so that the computed value of the index would contain an error equal to at most one 
unit in the fourth significant digit. For example, if the index had the value 1000, then 
the computed value would still lie between 999 .9 and 1000 . 1 .  

What operations inside the computer could produce 520? The increasing magni­
tude of the discrepancy-with stock prices soaring and the index sinking-suggests 
errors that compound and perpetuate themselves from one computation of the index 
to the next computation. The mathematical definition of the average X of N stock 
prices X1 , . . .  , XN uses the formula 

where parentheses indicate the sequence in which the computer performs the 
operations . An electronic computer could compute such an average of N = 1400 
numbers 2800 times daily. However, if in an instant stock prices change more quickly 
than the computer can compute the average, an alternate updating algorithm allows 
for the computation of the change in the average without computing the average all 
over again. Specifically, if the Nth stock price changes from XN to X� (the ordering 
of the stocks does not matter, because addition commutes), then the average changes 
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from X to X' as follows : 

X' = � ( NE1
X1 + x� ) = X +  � ( x� - xN ) · 

J = l 

Thus, to compute the new average X',  it suffices to add ( X� - XN )/N to the old 
average X. This alternate algorithm merely updates the old average with the change in 
the stock price to produce the new average . Instead of the N - 1 additions involved in 
the definition of the average, the updating algorithm involves only one subtraction 
(X� - XN ) and one addition. (The division by N occurs with both algorithms .) 

How could a simpler algorithm lead to larger errors? Updates are mathematically 
exact but ve1y sensitive to rounding errors . Recall that the computer truncated the last 
two digits from the computed average to display only three digits past the decimal 
point. In effect, the computer was replacing the average X by a truncated value X, 
which caused an error in the range 

0 .000 00 :::::; X - X :::::; 0 .000 99 . 
If all possible errors occur equally frequently, then the average error amounts to 

0 .000 00 + 0 .000 01 + ;�� + 0 .000 98 + 0 .000 99 = 0 .000 455 . 

Chopping 0.000 455 off the index 2800 times in a day accumulates a daily drop in the 
index of over one point : 2800 X 0 .000 455 = 1 .274 . Repeated over about 480 business 
days from January of 1982 through the first week of November of 1983, rounding by 
truncation of the last two digits results in an accumulated rounding error of 480 X 
1 .274 = 611 .52. This explains the discrepancy between an estimated value in the range 
900 to 1000 or more and a computed value around 520, from Janumy of 1982 to 
November of 1983 . 

Could such discrepancies have been avoided? Yes ,  because averaging 1400 non­
negative numbers from the definition of the average ( not the updating algorithm) 
through floating-point arithmetic with 8 digits yields a computed average X accurate 
to nearly 4 digits . Better yet, pairwise additions would produce nearly 6 accurate digits 
[1, p. 91] .  

In this instance many investors and officials had been watching stock prices closely 
and hence had an inkling that the results were skewed. Beside stock prices, computers 
also compute many other indicators , for instance, consumer price indices , poverty 
levels , and hence levels of government assistance and taxation. Fortunately, with 
today's emphasis on technology in the classroom unlike anything seen in 1982, our 
students are aware of the potential consequences of rounding errors in the last digits, 
aren't they? 

Acknowledgment. The preparation of this material was supported in part by the National Science 
Foundation's grant DUE-9455061 .  I also thank my colleague Dr. John Douglas , retired professor of 
chemistry, for his discussions and insight into rounding conventions outside of mathematics. 
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If d :::; r, the rational number [ a0 ; a1 , a2 , a3 , . . .  , ad ] is called the dth convergent to the 
continued fraction [ a0 ;  a1 , a2 , a3 , • . •  , a,. ] .  For example, [ 1 ; 1 ,  1 ,  1 ,  1 ,  . . .  , 1 ]  has conver-

--------
gents r 

2 3 5 8 [ 1 ] = 1 ,  [ 1 ; 1 ] = 1 ,  [ 1 ; 1 , 1 ] = 2 , [ 1 ; 1 , 1 , 1 ] = 3 ,  [ 1 ; 1 , 1 , 1 , 1 ] = 5 ,  . . . .  

As one might guess from these results , the dth convergent satisfies 

[ 1 ] Fd+2 ; 1 , 1 , 1 , 1 ,  . . .  , 1  = -F , 
� d+ 1 

where Fa is the dth Fibonacci number. An infinite continued fraction 
[ a0 ; a1 , a2 , a3 , • • .  ] is defined as the limit of its convergents . For example, 

[ ] . Fa+2 1 + ..J5 1 ; 1 , 1 ,  . . .  = hm -F = 2 d --> oo  d+ 1 

The continued fraction expansion of any positive number z can be obtained by 
setting a0 = l z J  (where l z J  is the greatest integer not exceeding z) and iterating the 
function f(t ) = t _ \ t J • If z is rational, the iteration eventually produces an integer, 

and the expansion is complete . We will use the following properties of continued 
fractions in what follows . We assume throughout that x is a given irrational number 
and x = [ a0 ; a1 , a2 , a3 , . . .  ] is its continued fraction. 

Fact l The convergents p, = [ a0 ; a1 , a2 , a3 , • • •  , ar ] to the continued fraction q, 
[ a0 ; a1 , a2 , a3 , • • .  ] can be computed for r ;;::: 0 by the recursive formula 

( Pr+ 1 ' qr+ 1 ) = ar+ 1 ( Pr ' qr ) + ( Pr- 1 ' q r-d 
with initial conditions ( p _ 1 , q _ 1 ) = (1 , 0) and ( p0 , q0 ) = (a0 , 1). 
Fact 2 e = [2 ; 1 , 2, 1 , 1 , 4, 1 , 1 , 6, 1 , 1 , 8, 1 , 1 , 10, . . .  ] . Using Fact 1 to compute the 
first few convergents to e (see table below) we see by induction that p,. is even and q,. 
is odd if and only if r = 0 or r = 2 (mod 6). 

0 1 2 3 4 5 6 7 
2 3 8 11 19 87 106 193 
1 1 3 4 7 32 39 71 

Fact 3 Let a�+ 1 denote [ a,. + 1 ; a,. + 2 , a,. + 3 ,  • • .  ]. Then 

Pr ( - 1) r  1 x - - = --- . q q
2 a' + q,._ t  r r r+ 1 q, 

It follows that the convergents Pnlqn lie alternately above and below x . 
Fact 4 If  I x - 1!.. 1 < �, for relatively prime integers p and q , then p/q i s  a q 2 q  
convergent to the continued fraction o f  x .  

We now use these facts to study rational approximations o f  e . 

LEMMA 1 . Let pJ q,. be the rth convergent to the continued fraction for e . If r = 0 
or r = 2 (mod 6), then 
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so  

Proof By Fact 3, i t  suffices to  show a'r+ 1 + Cfr- J  < 163 • If r = 6j, then qr 

a�+ 1 = [ 1 ;  4j + 2 ,  1 ,  1 ,  . . .  ] < 1 + 4j � 2 ::::;; i ,  
, qr- 1 7 13 ar+ 1 + -- < 6 + 1 = 6 .  qr 

If r = 6j + 2, then a�+ 1 = [1 ; 1 , 4j + 4, 1, . . .  ] < 2. By Facts 1 and 2, 

so 

qr- 1 __ qr- 1 1 1 
-,-.,------:-'"'----=---- < -- < -qr ( 4j + 2) qr_ 1 + qr_ 2 4j + 2 - 6 ' 

( t + 1) 1 +
1 ( 1 ) LEMMA 2. For all t > 0, 

t l  
::::;; e t + 2 · 

5 1  

• 

Proof If h( x ) is a concave function, integrable on [ a, b ], then Jensen's inequality 

for integrals gives h ( a ; b ) � b � a �bh( x ) dx .  Take h( x ) = ln x  and [ a , b ] =  
[ t ,  t + 1] to get 

In ( t + i ) � ( t + 1) ln ( t + 1) - t in t - 1 ,  

which is equivalent to the lemma. • 

Proof of the Theorem Recall that f(n) = ( � r By examining the first derivative of 

In f( n ) , we see that the maximal product occurs either at n = l � j or at l � j + 1 . Let 

t = l � j .  Direct calculation verifies the theorem for k ::::;; 71 , so we may assume that 

k > 71, or, equivalently, that t � 27. If � > t + i then I �  - n I is minimized when 
n = t + 1 . By Lemma 2, 

( t + 1) 1 +
1 

k > e ( t  + l )  > -'-----'--2 t t  
, 

which implies that f(t + 1) > f(t ), as desired. 
Now suppose that � < t + i. Let s = t + i - � > 0. By Fact 2 and Lemma 3, 

6 
13 ::::;; qn l qn e - pn l = ( 2t + 1) 1 ( 2 t + 1) e - 2 k l = 2 e(2 t + 1) s .  

Since t � 27, we have s � 13e(2� + l ) > 2!1 , and so k < { t + i - 2!1 )e . Dividing by 

t + 1, 
l l 

k ( t + 2 - 24t ) ( 12 t + 1 ) 
t + 1 < e t + 1 = e 1 - 24t ( t + 1) · 

Taking logs and writing In (1 + z )  as an alternating series gives 

k ( 12t + 1 ) 00 1 ( 12t + 1 ) k ln t + 1 < 1 + In 1 - 24t ( t + 1) = 1 - k�l k 24t ( t + 1) 
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Therefore, 

( 1 ) k 4 ( - 1) k -
1 3 1 ( 12 t + 1 ) k 

t ln 1 + t - ln t + 1 > t 
k�1 kt k - 1 + 

k
�1 r 24t ( t + 1 )  

864t 3 - i308t 2 - 17208t - 10367 
41472t 3 ( t + 1 )3 

The numerator has only one real root, at t ""  10.47, and is therefore positive since 
t ;:::: 27. Thus j(t)  > j(t + 1) . • 

Counterexamples to the conjecture A computer search found the first twelve 
counterexamples to the conjecture: 53, 246, 439, 632, 12973, 62144, 1 1 1315, 160486, 
209657, 258828, 7332553, 205052656. 

In fact, there are infinitely many counterexamples . Suppose k is a counterexamP,le, 
and let n be the integer that minimizes I � - e 1. Then e must lie between � and �1 n n n + 

b k d k If k k h 2e 2n + 1 s · d or etween n _ 1 an r� · , + 1 < e < n '  t en T > n(n + 1 ) . mce n oes not 

minimize I � - n l, � is closer to n + 1 than to n , whence 2� > 2n + l. Mu)tiplying 

these last two inequalities yields 4 > (2n"2 : �)2 , a contradiction. Hence � < e < , � 1 . 
In this case,  2,e > 2

(
11 - 31· ) and � < 2 n - 1 ,  so k is a counterexample if and only if /( n rt - e 

2k  e O < e - --- < ----::: 2n - 1  (2n - 1) z ·  ( 1)  

By Fact 3, the right-hand inequality in (1)  i s  satisfied by each convergent pJqr to 
e. By Fact 2, there are integers lc and n with p,. = 2 

2. � 1 if r = 0 or r = 2 (mod 6). By q,. n 
Fact 3, the successive convergents must be alternately above and below e .  Since 
p0/q0 = 2/1 < e, we have pJqr < e for all even r .  Hence (1) holds for 2 lc = Pr and 
2n - 1 = qr , where r = 0 or r = 2 (mod 6). This method produces infinitely many 
counterexamples of the form lc = p61j2 or lc = p61 +2 j2, for j = 1 ,  2, 3, . . . . These 
account for six of the first twelve counterexamples, mentioned earlier: 

j 

P6/2 
P6J+z /2 

1 

53 
632 

2 

12973 
258828 

3 

7332553 
205052656 
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Introduction Our attention has once more been drawn (see [2 ]  and its references) 
to the problem of determining the number Tn of triangles with integer sides and 
perimeter n. The solution of this problem can be written neatly as 

for n odd 

for n even , 

where ( x ) is the integer closest to x. Our proof comes in two stages .  First we show 
by a direct combinatorial argument that 

for n odd 

for n even , 

where p 3(n) is the number of partitions of n into at most three parts . Then we show 
using a novel partial fractions technique that 

The proofs For a triangle with integer sides a .::;; b .::;; c and odd perimeter n ,  
a + b - c , b + c - a , c + a - b 

are odd and positive , 

a +  b - c - 1 ,  b + c - a - 1 ,  c + a - b - 1 
are even and nonnegative, and if 

1 1 1 p = 2 { b + c - a - 1) , q = 2 { c + a - b - 1) , and r = 2 ( a + b - c - 1) , 

n - 3 
then p ;;:: q ;;:: r are nonnegative integers , and p + q + r = -2- . 

Conversely, if n ;;:: 3 is odd and p ;;:: q ;;:: r are nonnegative integers with p + q + r = 
n - 3 -2- and if 

a = q + r + 1 ,  b = p + r + 1 ,  and c = p + q + 1 ,  
then a .::;; b .::;; c are the sides of a triangle with perimeter n .  

Similarly, given a triangle witl1 integer sides a .::;; b .::;; c and even perimeter n ,  
a + b - c ,  b + c - a ,  and c + a - b 

are even and positive, 

a + b - c - 2 , b + c - a  - 2 , and c + a  - b - 2 
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are even and nonnegative, and if 

1 1 1 p = 2 { b + c - a - 2) , q = 2 { c + a - b - 2) , and r = 2 ( a  + b - c - 2) , 

n - 6  
then p � q � r are nonnegative integers , and p + q + r = -2- .  

Conversely, if n � 6 is even and p � q � r are nonnegative integers with p + q + r 
n - 6  = -2- and if 

a = q + r + 2 ,  b = p + r + 2 ,  and c = p + q + 2 
then a .::;; b .::;; c are the sides of a triangle with perimeter n . 

To show that 

/ ( n + 3) 2 ) pi n) = \ 12 , 

we start with the generating function 

n�O
p3( n) q n = { l - q ) ( 1 -

1
q 2 ) ( 1 - q 3 )

. 

• 

To see that this is indeed the generating function for partitions into at most three 
parts , we note that partitions into at most three parts are equinumerous with partitions 
into parts no greater than three (see, e .g. ,  [1, Theorem 1 .4]) and the generating 
function for partitions into parts no greater than three is easily seen to be 

( 1 + q 3 + q 3+ 3 + . . .  ) ( 1 + q 2 + q 2+ 2 + . . .  ) ( 1 + q l + q l + l  + . . .  ) 
1 

In order to extract an explicit formula for p/n) from the generating function, it is 
usual to use partial fractions . I have found a method (other than by using a computer 
package, such as Maple) by which we can avoid the horrors of finding the complete 
partial fractions expansion of the generating function. I will demonstrate the method 
below, and follow it with an explanation of the various steps . 

First, observe that the denominator of the generating function can be factored as 

{ 1 - q ) 3{ 1 + q ) { 1 - wq ) { 1 - wq ) , 
where w is a cube root of unity. Thus the partial fractions expansion of the generating 
function takes the form 

" p ( n) q " = A + B + ___f_ + ___Q_ + E + F 
n:-o 3 { 1 - q ) 3 { 1 - q ) 2 1 - q 1 + q 1 - wq 1 - wq 

It follows that 

p3( n) = A ( n ; 2 ) + B { n 1 1 ) + C + D{ - 1) " + Ewn + Fwn . 

Observe that the expression C + D( - 1)n + Ewn + Fwn is periodic with period 6, and 
so takes values ci , i = 0, . . . , 5, according to the residue of n modulo 6. It follows that 
the generating function can be written 
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With these observations in  mind, we have 

n�O
P3( n) q " = ( 1 - q ) ( 1 -

1
q 2 ) ( 1 - q 3 ) 

1 1 
( 1 - q )3 ( 1 + q ) ( 1 + q + q2 ) 

- 1 ( 1 ( 1 - q ) (5 + 3q + q2 ) ) -
( 1 - q )  3 

. 6 + 
6( 1 + q ) ( 1 + q + q 2 ) 

1 1 1 5 + 3q + q 2 
= - + . ----'------'--6 ( 1 - q ) 3 ( 1 - q ) 2 6( 1 + q ) ( 1 + q + q 2 ) 

1 1 1 ( 1 ( 1 - q ) (7 + 7q + 3q 2 ) ) 
= 6 ( 1 - q ) 3 

+ 
( 1 - q ) 2 . 4 + 12( 1 + q ) ( 1 + q + q 2 ) 

1 1 1 1 7 + 7q + 3q 2 
= - + - + ____ ___!. _ __!_ __ _ 6 ( 1 - q ) 3 4 ( 1 - q )2 12( 1 - q ) ( 1 + q ) ( 1 + q + q2 ) 

=
� 1 + � 1 + (7 + 7q + 3q 2 ) ( 1 - q + q2 ) 
6 ( 1 - q ) 3 4 ( 1 - q )2 12( 1 - q6 )  

= 
� 1 + � 1 + 7 + 3q 2 + 4q 3 + 3q 4 
6 ( 1 - q ) 3 4 ( 1 - q ) 2 12( 1 - q 6 )  

= � n�J n ; 2 ) q " + i n�O 
( n + 1) q " 

+ ;2 (7 + 3q 2 + 4q 3  + 3q4 ) L q 6n 
n ;;o:O  

The result follows . 

5 5  

The explanation of the various steps above i s  as follows . Since we know the major 
contribution to pin) comes from the term (1 - q )3 in the denominator, we attempt 
to separate this term from the generating function. We write 

L p3( n) q " = 
1 

3 j( q ) , where f( q )  = ( ) (  
1 

2 ) . n ;;o: O  ( 1 - q) l + q  1 + q + q 

Then we replace j(q)  by its Taylor series about 1 , at least to the extent of writing 

1 f( q )  =f( l) + g ( q )  = 6 + g ( q ) . 
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An easy calculation gives 

1 1 g ( q ) =f( q ) -f( 1) = { 1 + q ) ( 1 + q + q 2 ) - 6 

6 - { l + q ) ( 1 + q + q 2 ) { 1 - q ) (5 + 3q + q 2 ) 
= 6{ 1 + q ) ( 1 + q + q 2 ) = 6{ l + q ) ( 1 + q + q 2 ) . 

Thus we obtain the fourth line above . 
. . 5 + 3q + q 2 . Applymg the same procedure to the function 

( ) ( 2 ) 
, we arnve at 

6 1 + q 1 + q + q  
the sixth line, where the denominator is 12(1 - q)(1 + q )(1 + q + q 2 ) . Now we note 
that (1 - q)(1  + q)(1  + q + q 2 ) divides 1 - q6 ,  since 

1 - q6 = ( 1 - q 3 ) ( 1  + q 3 )  = { 1 - q ) { 1  + q ) ( 1 + q + q 2 ) ( 1 - q + q 2 ) .  

So we multiply top and bottom by 1 - q + q 2 to obtain the eighth line above. The rest 
is straightforward. 

R E F E R E NC E S  

1 .  George E .  Andrews, The Theory o f  Partitions, Encyclopedia of Mathematics and its Applications, 
Addison-Wesley, Reading, MA, 1976. 

2. Nicholas Krier and Bennet Manvel, Counting integer triangles, this MAGAZINE 71 ( 1998), 291-295. 

Math Bite: Enumerating Certain Sparse Matrices 

THEOREM .  The number of n X n matrices with ( i )  nonnegative integer entries ; 
(ii ) at most two nonzero entries in each line (i . e . ,  row or column); ( iii ) all line-sums 
3; is n !2 • 

Proof 

[ � 0 3 1 ] [ � 0 1 � ] [ � 0 2 � ] 1 0 1 0 + 0 0 
2 0 0 0 2 0 
0 0 0 0 0 0 

( typical matrix) 
( erase all the 2's, ) 

change 3's to 1's 
( erase all the 1's ,  ) 

change 3's to 2's 

Remark The n X n matrices satisfying (i) and (ii) above, but with all line-sums 
equal to r, are enumerated using generating functions in the recently-published 
Enumerative Combinatorics, Vol . 2, by Richard Stanley (Problem 5 .62). The generat­
ing function yields the surprisingly simple formula n !2 in the special case r = 3. The 
picture above gives a combinatorial explanation; it shows that such a matrix can be 
uniquely represented as P + 2 Q, where P and Q range over all arbitrary n X n 
permutation matrices .  

-DAVID CALLAN 
DEPARTMENT OF STATISTICS 

UNIVERSITY OF WISCONSIN-MADISON 
MADISON, WI 53706-1693 
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H ow Many Mag ic  Sq uares Are There?  

C A R L  L I B I S  
Antioch Col l ege 

Yel low Spr ings, OH 45387 

j .  D .  P H I L L I P S 
Sa in t  Mary's Col l ege of Ca l i forn ia 

Moraga, CA 945 75 

M I K E S P A L L  
Idaho State U n ivers i ty 

Pocate l lo, I D  83209 

Only the crustiest of curmudgeons doesn't love magic squares .  And even these sour 
souls know some folklore about magic squares .  But how many of us know how many 
magic squares there are? In [3] Liang-shin Hahn posed the question: How many 4 X 4 
multiplicative magic squares are there that consist of the 16 divisors of 1995 . In this 
brief note we answer Hahn's question by establishing a natural bijection between a 
class of multiplicative magic squares and a class of additive magic squares (cf. [ 1]). 

A multiplicative (respectively, additive) magic square is an n X n matrix of integers 
in which the product (respectively, sum) of the numbers in each row, in each column 
and in each diagonal is the same. An additive magic square of order n is an n X n 
additive magic square whose entries consist of the numbers 0, 1, . . . , n2 - 1 .  It is easy 
to show that the sum of the numbers in each row, in each column and in each 
diagonal of an additive magic square of order n is equal to (nj2)(n2 - 1) .  Much is 
known about additive magic squares [2], while surprisingly little has been written 
about multiplicative magic squares .  We offer the present paper as a modest remedy to 
this situation. 

Let c be the product of n distinct prime numbers . Thus , c has 2 " factors . For 
example, 1995 is the product of four primes: 3, 5, 7, 19, and has sixteen factors : 
1 ,  3, 5, 7, 15, 19, 21 ,  35, 57, 95, 105, 133, 285, 399, 665, 1995 . If n is even, let Me ,. be 
the set of all 2 " 12 X 2 " 12 multiplicative magic squares each of whose entries c�nsists 
of the 2 " factors of c. Let A .. be the set of all additive magic squares of order n.  

The following facts are easy to  establish: 

FACTS . Let M be a magic square in Me, n · Then 
i. The product of all 2 " factors of c is c2 " - 1 • Thus, the product of each row,  each 

column, and each diagonal of M is (c2 " - 1 )2- " 12 = (c2 )<" /2) - l . That is , M has 
precisely 2 < " /2) - l occurrences of each of the n prime factors of c in each row, in 
each column, and in each diagonal. 

ii . No single prime factor of c occurs more than once in any given entry in M. 
THEOREM.  Me, n is in 1 -1  correspondence with A2 .. ;• . 

Proof Let M = [m i , j ]  be a magic square in Me, n · By the Facts , each mi , j  can be 
identified with a unique string of length n consisting of O's and l's as follows : arrange 
the prime factors of c in ascending order p 1 , p2 , . . .  , p,. ; if Pk is a factor of mi ,j  place 
a 1 in the string's k 1h position; if not, place a 0. For example, if c = 1995, and 
mi , j  = 3 · 5 · 19, then the string identified with mi , j  is l lOl .  Now define f : Me, ,. � A,. ; 
[m;) � [ a;) where a i , j  is the base 10 number-between 0 and n2 - 1-whose 
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base 2 expression is the n-string associated with mi , j "  Clearly, [ a;) is a 2 n /2 X 2 n l2 
matrix whose 2n entries are the integers 0, 1 ,  . . .  , 2 n - 1 . Since each prime divisor of c 
occurs exactly 2(n /2) - l times in each row, in each column and in each dia$-onal, the 
sum of the strings in each row, in each column, and in each diagonal is r,;�; - 1 1 1  . .  · 1 ;  
in  base 10 :  

2(n /2) - l ( 2° + 2 1 + · · ·  + 2n - l ) = 2(n /2) - l [ ( 1/4) ( n) ( n2 - 1) )  = ( 1/2) ( n ) ( n2 - 1) . 

And thus , [ a;) is an additive magic square . Clearly, f is injective. Checking that f is 
also surjective is left to the reader. This completes the proof. 

Example. Let c = 1995 and consider the action of f on the following magic square 
M in Ml995, 4 :  [ 21 1995 5 

f( M ) =j 28; 95 105 
3 133 

665 7 57 [ 3 · 5  3 · 5 · 7 · 19 
=J 3 · 5 · 1! 5 · 19 

3 
5 · 7 · 19 7 [ 1010 1 1 1 1  0100 

0000 0101 1 1 10 
1 101 1000 001 1  
0 1 1 1  0010 1001 

3E1 l 
5 

3 · 7 ·  

:� 1 )  3 · 5 · 7  
7 · 19 5 · 7  
3 · 19 3 · 5  

0001 1 [ 10 
101 1 0 
01 10 13 
1 100 7 

15 4 
5 14 
8 3 
2 9 

1

: 1 6 . 
12 

Since IA4 1  = 880 [2], the theorem answers Hahn's question and its natural generaliza­
tion: I Mc) = I A4 1  = 880, (cf. [4]) . 

R E F E R E N C E S 

1. C. Libis, J. Phillips, and M. Spall, On a certain class of multiplicative magic squares, to appear. 
2 .  W. Benson and 0. Jacoby, New Recreations with Magic Squares, Dover, New York, NY, 1976. 
3 .  Macalester College Problem of the Week, Nov. 30, 1994. 
4. Dame K. Ollerenshaw and Sir H .  Bondi, Magic squares of order four, Phil. Trans. R.  Lond. A 306 

(1982) 443-532. 

An o ld  Qu ick ie (J a n ua ry /Februa ry 1950) 

A cube o f  wood 3 inches o n  each edge i s  t o  be cut into cubes 1 inch on 
each edge . If, after each cut with a saw,  the pieces may be piled in any 

desired manner before making the next cut , what is the smallest number of 

different "cuts through the pile" that will accomplish the desired dissection? 

(Solution on page 70. )  
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Proof Without Words: Pythagorean Runs 

32 + 42 = 52 
102 + 1 12 + 122 = 132 + 142 

212 + 222 + 232 + 242 = 252 + 262 + 272 

T = 1 + 2 + . . .  + n = (4T - n)2 + . . .  + (4T )2 = (4T + 1)2 + . . .  + (4T + n)2 n n n n n 

For n = 3: 

- 24=4 0.+2+ 3 )  - 4 •3 

1 
24 

j 
1 
23 + 

'-------..J j 
1 
22 + 

'------------' 1 
r 
27 

�� J 
-MicHAEL BoARDMAN 

pACIFIC UNIVERSITY 
FoREST GROVE, OR 971 16 
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Shortest Shoe l aces 

D A N I E L  C .  I S A K S E N  
U n iversity of Ch i cago 

Ch icago, IL 6063 7 

Introduction Halton [1] first studied the question of finding the shortest possible 
lacing of a shoe. Misiurewicz [2] generalized Halton's original result to handle 
irregularly placed eyelets . We generalize Halton's result in a different direction by 
considering lacings that do not necessarily alternate in a regular way. 

Halton proved that the Ame1ican style lacing is the shortest among all possible 
alternating lacings . However, some common lacings are not covered by Halton's 
definition. Neither the ice skater 's lacing (FIGURE lA) nor the playground lacing 
(FIGURE lB) is alternating. 

A I A2 A3  A4 As A6 
A I Ao A3 A4 As Ao 

=>cxJ 
Bl B2 B3 B4  Bs Bo B I B2 B3 B4 Bs Bo 

(a) (b) 

FIGURE 1 
(a) ice skater's lacing, (b) playground lacing 

Something to avoid in sensible lacings is the occurrence of three consecutive eyelets 
on the same side . In this case, why bother to use the middle one? This condition is 
equivalent to requiring that every eyelet (except possibly the first and last) be the 
endpoint of at least one crossing. 

A lacing of degree n is an ordering of the set 

{ Al ' A2 ' . . .  ' An '  Bl ' B2 ' . . .  ' Bn } 
starting with A1 and ending with B1 , such that no more than two A's (respectively 
B 's) occur in consecutive places. A bipartite lacing of degree n is a lacing of degree n 
in which the A's and B 's alternate . Halton's definition is equivalent to our definition 
of bipartite lacings . 

The main result Following Halton, we shall assume that the two rows of eyelets are 
parallel and that the eyelets in each row are evenly spaced. A simple calculation shows 
that the ice skater's lacing is significantly shorter than the American style lacing. In 
fact, the ice skater's lacing is minimal . A modification of Halton's original proof for 
bipartite lacings [1] demonstrates tllis fact. 

THEOREM .  For any n , L15 is a shortest lacing of degree n . 
The idea of the proof is as follows. Start with a lacing L. Following Halton, create a 

patl1 P in a rectangular grid so that the path starts in the upper left comer and so that 
all the segments of P are horizontal, vertical, or diagonal downward and to the 1ight. 
FIGURE 2 illustrates this transformation in two cases .  The dashed line represents L18 , 
while the solid line represents another particular lacing. 
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At top, the iceskater's lacing and another lacing. At bottom, these lacings are unwound. 

6 1  

We do not know exactly where P ends . The original ice skater's lacing has as many 
non-crossing steps as possible. Hence P15 ends somewhere above (or possibly in the 
same row as) the endpoint of P .  

Moreover, the horizontal lengtl1 of  P must be at least 2n - 2 units since L 
connects A1 to A11 to B1 . The horizontal length of P15 is exactly 2n - 2 units , so we 
know that P must end to the right of (or possibly in the same column as) the endpoint 
of P15 .  

From this point, slightly technical but straightforward arguments , which we leave as 
an exercise for the reader, show tl1at P is no shorter tlmn P15 .  One way to show tl1is is 
to lengthen P15 by replacing horizontal segments with diagonal segments until P and 
P15 end in the same row. Then cancel horizontal and vertical segments of equal lengtl1 
from P15 and P until P15 h.ecomes a straight line . This completes tl1e proof. 

Uniqueness For n even, L15 is the unique shortest lacing. When n is odd, tl1ere 
are exactly (n  + 1)/2 shortest lacings . They differ only by reordering the horizontal 
and crossing segments . 

Now you know tl1e best way of temporarily relacing your shoe the next time your 
shoelace breaks ! 

R E F E R E N C E S  

l .  John H.  Halton, The shoelace problem, Math. Intelligencer 17 (no. 4) (1995), 36-41 .  
2 .  Michal Misiurewicz, Lacing irregular shoes, Math. Intelligencer 18 (no . 4 )  (1996), 32-34. 
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Proposa l s  

To be considered for publication, solutions should be received by july 1,  2000. 
1 589. Proposed by Ayoub B. Ayoub , Pennsylvania State University , Abington , 
Pennsylvania . 

On the sides of .6.ABC,  three similar triangles ,  AKB , BLC, and CNA, are drawn 
outward. If AB and KL are bisected by D and E respectively, prove that DE is 
parallel to NC and determine DEjNC. 

c L 

A 

K 

1 590. Proposed by Constantin P .  Niculescu , University of Craiova, Craiova, Romania . 
For given a, 0 < a :::;; 7T /2, determine the minimum value of a � 0 and the 

maximum value of f3 � 0 for which ( x ) "' sin x ( x ) IJ 
a :::;; sin a :::;; a 

holds for 0 < x :::;; a. 

We invite readers to  submit problems believed to  be  new and appealing to  students and teachers of 
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any 
bibliographical infonnation that will assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE .  Each solution should begin on a 
separate sheet containing the solver's name and full address. 

Solutions and new proposals should be 1nailed to George T. Gilbert, Problems Editor, Department of 
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically 
(ideally as a LATEX file) to g .  gi lbert@tcu . edu . Readers who use e-mail should also provide an 
e-mail address. 
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(This generahzes the well known inequality due to Jordan, which asserts that 

2 xj7T � sin x � 1 on [0,7Tj2] .) 
1 591 . Proposed by Western Maryland College Problems Group , Westminster, Mary­
land. 

We call a 3-tuple (a ,  b ,  c) of positive integers a triangular triple if 

where Tn = n(n + 1)/2 is the nth triangular number. Given an integer k ,  prove that 
there are infinitely many triples of distinct triangular triples ,  (a1 ,  h1 , c) for i = 1 ,  2, 3 ,  
such that 

1 592. Proposed by Ho-joo Lee, student , Kwangwoon University , Seoul, South Korea. 
Let ABCDE be a cychc pentagon�rove that 

cot LABC + cot LACB = cot LAED + cot LADE 
if and only if 

cot LABD + cot LADB = cot LAEC + cot LACE . 

1 593. Proposed by Jon Florin,  Chur, Switzerland. 
Let (fn)n � 1 be a sequence of continuous , monotonically increasing functions on the 

interval [0, 1] such that J/0) = 0 and fn(l) = 1 .  Furthermore, assume 

00 
L max � i fn( x ) - x i < oo .  

n = l  
(In particular, (fn )n � 1 converges to the identity on [0, 1] . )  

(a) Must (fn o fn - l o • • • o f2 o f1 )n � 1 converge to a continuous function? 
(b) Must (f1 o f2 o . . .  o fn - l o fn)n � 1 converge to a continuous function? 

Q u i ck ies 

Answers to the Quickies are on page 70. 
Q897. Proposed by Charles Vanden Eynden , Illinois State University, Normal, 
Illinois . 

Prove : If a, b ,  and c are positive integers such that a l b c ,  then a l b a . 
Q898. Proposed by Mihaly Bencze, B ra§OV, Romania . 

Let n be a positive integer and f: [ a , b ]  --) (a ,  b )  be continuous. Prove that there 
exist distinct c1 , c2 , . . .  , en in [ a , b ]  that are in arithmetic progression and satisfY 
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So l utions  

A n  Inequal ity i n  a Quadri lateral February 1 999 
1 564. Proposed by Wu Wei Chao , Guang Zhou Normal University, Guang Zhou 
City , Guang Dong Province, China . 

Let P be the intersection of the diagonals of convex quadrilateral ABCD with 
LBAC + LBDC = 180 • .  Suppose that the distance from A to the line BC is less 
than the distance from D to BC.  Show that ( AC ) 2 AP · CD 

BD > DP · AB . 

Solution by Oum Sang-il, Seoul, South Korea. 
We first show that [ ABC ] · [ ACD] > [ BCD] · [ ABD] . From 

LABC + LBCD = 360° - (LBAD + LCDA) < 360° - (LBAC + LBDC ) = 180° 
and the convexity of ABCD, it follows that the distance from C to the line AB is 
greater than the distance from D to the line AB , hence [ ABC ]  > [ ABD] . Because 
the distance from A to the line BC is less than the distance from D to the line BC,  
we know that [ BCD] > [ ABC ] . Then 

[ ABC ] · [ ACD] - [ BCD ] · [ ABD] 
= [ ABC ] ( [ ABCD ] - [ ABC ] ) - [ BCD ] ( [ ABCD] - [ BCD ] ) 
= ( [ ABC ] - [ BCD] ) ( [ ABCD ] - [ ABC ] - [ BCD] ) 
= ( [ ABC ] - [ BCD] ) ( [ ABD ] - [ ABC ] ) > 0 . 

We now substitute 

[ ABC ] = i · AB · AC · sin LBAC , 
1 0 [ ACD ] = "2 · AC · DP · sm LCPD , 

[ BCD ] = i · BD · CD · sin L BDC = i · BD · CD · sinLBAC , 

[ ABD ] = .!_ · BD · AP · sin LAPB = .!_ · BD · AP · sinLCPD 2 2 , 

obtaining AC 2 • AB · DP > BD2 · CD ·  AP . It follows that ( AC ) 2 AP · CD 
BD > DP · AB . 

Also solved by Robin Chaprrum (United Kingdom), Con Amore Problem Group ( Denmark ), Daniele 
Donini { Italy), Robert L. Doucette, Jiro Fukuta ( Professor Emeritus, Japan), Victor Y. Kutsenok ,  Peter Y. 
Woo ,  Bilal Yurdakul (Turkey ), and the proposer. 

Selling Stamps February 1999 

1 565 . Proposed by Joaqu{n Gomez Rey , I. B .  "Luis Bufiuel," Alcorc6n , Madrid, 
Spain . 

A philatelist has (n + 1)! - 1 stamps and decides to sell a portion of them in n 
steps. In each step he will sell 1j(k + 1) of his remaining total plus 1/(k + 1) of one 
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stamp, for k = 1 ,  . . .  , n . However, these n steps are ordered randomly. Let Pn denote 
the probability that he does not sell the same number of stamps in two successive 
steps .  Evaluate lim , _, oo p, . 
I. Solution by Michael H. Andreoli , Miami Dade Community College (North), Miami , 
Florida. 

We will show that lim , _, oo p, = 1je .  
Let i � X ; be a random permutation of { 1 ,2, . . .  , n} . On the k th sale , 1j( x k + 1) of 

the remaining total plus 1/( x k + 1) of one stamp will be sold. Denote the number of  
stamps sold on step k by Gk . Then G1 = (n  + 1) !j( x 1 + 1) and Gk = [(n + 1) ! - G1 
- G2 - • • •  - Gk_ 1 ]/( x k + 1) for k >  1 .  A straightfmward induction verifies that 

G _ ( n + 1 ) ! x 1 x2  . . .  x k _ 1 k - ( x 1 + 1 ) ( x 2 + 1) . . .  { xk + 1)  

for k >  1 .  From this latter expression, we see that Gk = G1, + 1 i f  and only if  x k = x k + 1 
+ 1 .  Thus , Pn is the probability that, in a random permutation of { 1 ,2, . . .  , n}, i is 
never immediately followed by i - 1 for i = 2,3, . . .  , n .  

Let A; denote the event that i i s  immediately followed by  i - 1 in  a random 
permutation. We use the inclusion-exclusion formula to calculate p, = P(A2 n A3 
n . . . n if,). Note first that there are ( " � 1 ) k-tuple intersections of the A; , each of 

which has probability (n - k )ljn ! .  Inclusion-exclusion then gives 

= 
n�1 ( n - 1 ) { n - k ) ! { _ 1) 

k = "�1 n - k { _ 1) 
k p, '-- k n !  '-- n- ld k = O  k = O  

n - 1 ( _ 1) k 1 n - 1 { - l) k 
E -�< �- - ;:  E ( k - 1) !

. 
k = O  k = 1  

It follows that lim , _, oo p, = 1je. 
II. Solution by Robin Chapman , University of Exeter, Exeter, United Kingdom. 

Suppose at successive stages the philatelist sells 1/(k + 1) of his remaining stamps 
plus 1/(k + 1) of a stamp, and 1/(1 + 1) of his remaining stamps plus 1/(1 + 1) of a 
stamp. If before the former of these stages he has r - 1 stamps, then he sells 
r j(k + 1) of the stamps in the fonner stage, leaving him kr j(k + 1) - 1 stamps and 
he sells kr j[(k + 1Xl + 1)] in the latter stage . He sells the same number of stamps in 
both of these stages if and only if k = l + 1. Let ( k 1 , k 2 , . . .  , k , )  be the random 
sequence of k 's .  These form a permutation of 1, 2, . . .  , n and the philatelist never sells 
the same number of stamps on successive days if and only if k ; + 1 =I= k ; - 1 for 
1 � i < n .  Let sn denote the set of permutations of the set { 1 ,  2, . . .  ' n} considered as 
the set of all ways ( k 1 ,  k 2 , • . .  , k n) of writing the numbers 1 ,  2, . . .  , n in order. Let A,  
b e  the set o f  ( k 1 ,  k 2 , • • •  , k,)  E S" with n o  k ; + 1 = k ;  - 1 and let a , = lA ,  I .  Then 
Pn = anfn ! .  

We aim to provide a recurrence for a , .  Given n � 1 if we remove the occurrence of 
n from an element ( k 1 ,  k 2 , . • .  , k , )  of A, we either get an element of An _ 1 or an 
element 11 , l2 , . • .  , l " _ 1 of S" _ 1 where exactly one 1 ; + 1 = l ; - 1 .  Let B, be the set of 
elements ( k 1 ,  k2 , . • .  , k n ) E S,; with exactly one instance where k ; + 1 = k ;  - 1 and let 
b, = I B, 1 .  Given an element of A, _ 1 we can create an element of A, by inserting n 
in exactly n - 1 ways : by inserting n before any of the numbers 1 ,  2, . . .  , n - 2 or at 
the end. Given an element of Bn _ 1 we can create an element of An by inse1ting n in 
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exactly one way: between tl1e two adjacent numbers which decrease by 1 .  Hence 

an = ( n - 1) an - 1 + bn - 1 • 

We now need to count B11 •  Given ( l 1 , l 2 , . . .  , ln ) E B11 consider the unique l = l ; 
with l i + 1 = l - 1 .  If we remove l and reduce each l

1 
in the permutation with l

1 
> l by 

1 ,  we get an element of A11 _ 1 . Given an element in A11_ 1 and l E {2, 3, . . .  , n} we can 
reverse the procedure to get an element of B11 • Hence for n � 1 we have bn = 
(n - l)a11 _ 1 . Thus 

a, = ( n - 1) a11 _ 1 + ( n - 2) an - 2 '  

The recurrence is valid for all n � 2 with the convention that a0 = a1 = 1 .  To solve 
this recurrence set rn = na, . Then 

r11 = nr11 _ 1 + nr11 _ 2 . 

Now set S11 = r, - (n + l)r11 _ 1 for n � 1 .  Then S11 = - s11 _ 1 for n � 2 and so 

( )
n - 1 ( ) n - l S 11 = - 1 s 1 = - 1 . 

Now set tn = r11j(n + 1)! . We get 

and so 

Thus 

n ( _ 1) } - 1 
tn = to + 

j� ( j  + 1) !  

c - 1r- 1 

( n + 1) ! 

n + l  ( _ 1)1 n + l  ( - 1)1 E -. �- = E -. �- . 
j � 2  } · j � O  } · 

n + 1 n + 1 ( - 1  )1 p11 = anjn ! = rn/( n - n ! ) = ( n + 1) tnfn = -- E -.-1 -n J ·  j � O  

and Pn � 1/e as n � oo as required. 

Also solved by Jean Bogaert ( Belgium), Con Amore Problem Group ( Denmark ), Daniele Donini ( Italy ), 
Robert L .  Doucette, Kathleen E. Lewis, Michael Reid, Oum Sang-il ( South Korea), and the proposer. 

Area and Perimeter Ratios of Inscribed Rectangles February 1999 

1 566. Proposed by Stephen G. Penrice, Morristown , New Jersey . 
Let circle C circumscribe (nondegenerate) rectangle R.  Let a be the ratio of the 

area of C to tl1e area of R,  and let {3 be the ratio of the circumference of C to the 
perimeter of R. Show that a and {3 cannot both be algebraic. 

Solution by Con Anwre Problem Group , Copenhagen , Denmark . 
Let C have radius r and let R have sides x and y .  Then we have 

and, therefore, 

7Tr2 
a = --xy and 

27Tr 7Tr  {3 = 2 x + 2 y  = -x -+-y ' 
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It  follows that 

so that 

7Tr x + y = /3 and 

7T2 27T 4 = - - - or 4af3 2 = a7T 2 - 2 f3 27T .  
/3 2 a 

67  

We have found that 7T satisfies the equation az 2 - 2 {3 2z - 4af3 2 = 0. If  both a and 
f3 were algebraic, then 7T would also be algebraic, which it is not. 

Also solved by Roy Ba·rbara ( Lebanon), Robin Chapman (United Kingdom), Ivko Dimitric, Daniele 
Donini ( Italy), Hans Kappus ( Switzerland), Murray S. Klamkin (Canada), Kee-Wai Lau (China), Can A. 
Minh ( graduate student), Christopher Pilman and Daniel Bombeck , Michael Reid, Heinz-Jiirgen Seiffert 
(Germany), Southwest Missouri State University Problem Solving Group , Monte f. Zerger, and the 
proposer. There was one inco·rrect solution. 

The Smith Normal Form of a Matrix February 1999 

1 567. Dennis Spellman, Philadelphia, Pennsylvania, and William P .  Wardlaw, United 
States Naval Academy, Annapolis, Maryland. 

Find the Smith normal form over the integers of the n X n matrix A with entries 
· i  aiJ =J . 

(The Smith normal form of an integral matrix A is a diagonal matrix D that is 
obtained through applying to A a sequence of elementary row and column operations 
with integral matrices of determinant ± 1. It is defined to be the unique such matrix 
whose diagonal entries dii are nonnegative integers satisfying (i) d; ;  =/= 0 if and only if 
i :::;; rank( A) and (ii) du divides d( i + l) ( i + l) for 1 :::;; i < rank( A).) 
Solution by John H. Smith, Boston College , Chestnut Hill , Massachusetts . 

Let D(k )  be the k X k diagonal matrix with diagonal entries d; ; = i ! .  We show that 
there are unimodular matrices U and L which are upper and lower triangular, 
respectively, such that LAU = D(n), hence D(n) is the Smith normal form of A. 

Let 

A( k ) = ( D�k ) 
elk ) ) 

( k + 1) ! 
O !  

( k + 2) ! 
C ( k ) = 1 !  

n !  
( n - k - 1 ) ! 

and 

( k + 1) ( k �� 1) ! 

( k + 2) ( k �
!
2) ! 

n !  n ( n - k - 1) ! 

( k + 1) n - k - l ( k �
!
1 ) ! 

( k ) n - k - l ( k + 2) ! + 2 1 !  

n n - k - l n !  
( n - k - 1) ! 

Note that A(O) = A and A(n) = D(n), so it will suffice to show that there are 
unimodular matrices U(k )  and L(k )  which are upper and lower triangular, respec­
tively, such that L(k )A(k )U(k )  = A(k + 1). We describe these matrices by describing 



68 © MAT H EMAT I CA L  ASSOC IAT I O N  O F  A M E R I CA 

their action on the columns and rows of C(k). First, U(k )  subtracts k + 1 times the 
next-to-last column from the last, then k + 1 times the third-to-last column 
from the next-to-last, and so forth, ending by subtracting k + 1 times the first column 
from the second. This produces 

( k + 1) ! 
O !  

( k + 2) ! 
1 !  

n !  
( n - k - 1) ! 

0 

( k + 2) ! 
O !  

n !  
( n - k - 2) ! 

0 

( k + 2)" - k - 2 ( k ;
,
2) ! 

n n - k - 2 n !  
( n - k - 2) ! 

Because (k  + 1) ! divides the product of any k + 1 consecutive integers, we may 
subtract appropriate multiples of the first row from lower ones to make the rest of the 

first column zero, yielding ( ( lc : l ) !  
C (ko+ l) ) ' which, combined with D(k ), gives 

A(k + 1). 

Also solved by Michel Bataille ( France), David Callan, Robin Chapman (United Kingdom), Con Amore 
Problem Group ( Denmark), Daniele Donini ( Italy), Robert L. Doucette, Reiner Martin, and the proposer. 

Groups with Restricted Intersections of Subgroups February 1999 

1 568. Proposed by Emre Alkan , student , University of Wisconsin , Madison , Wiscon­
sin . 

Determine which finite , nonsimple groups G satisfy the following: If H and K are 
subgroups of G, then either (i) H c K, (ii) K c H, or (iii) H n K = {e} .  

Solution by Joel D. Haywood, Macon State College , Macon , Georgia . 

We show that a finite group G, whether simple or not, satisfies the given condition, 
which we will refer to as C,  if and only if for some distinct primes p and q, G is (a) 
cyclic of order a nonnegative power of p ,  (b) noncyclic of order p2 , (c) of order pq , 
or (d) a semi-direct product (?L.P X ?L.P) ><I ?L.q  with no subgroup of order pq . 

We first prove sufficiency. A cyclic group has a unique subgroup of every order 
dividing the order of the group and, for groups of prime power order, those subgroups 
are totally ordered by inclusion, which proves sufficiency for (a) . By Lagrange's 
Theorem, any two subgroups of prime order are either equal or have trivial intersec­
tion, which proves sufficiency for (b) and (c). In (d), the Sylow p-subgroup is normal, 
hence unique . All subgroups of order p are contained in this Sylow p-subgroup . All 
other pairs of nontrivial, proper subgroups have trivial intersection, which proves 
sufficiency for (d). 

We tum to necessity. 
Because any subgroup of H is a subgroup of G, if H does not satisfy C,  

then G does not either. Therefore, if  G satisfies C and H i s  a subgroup of G, then H 
satisfies C .  

We next prove that if  G satisfies C and i s  a p-group, then G i s  cyclic or  o(G) = p2 • 
Suppose G is nonabelian . Then there exist elements a and b of G such that ab =/= ba . 
Thus, the centralizers of a and b are subgroups of G such that neither one contains 
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the other. Thus , by C ,  their intersection is  trivial. Because Z(G) i s  in their intersec­
tion, Z(G) = {e} .  Because G is a p-group, Z(G) =/= {e} . Thus , G is abelian . If G is not 
cyclic, then G is the direct product of two subgroups H and K. Let H 1 be a proper 
subgroup of H. Then, H 1 X K and H are subgroups of G such that neither contains 
the other. Thus, by C, their intersection is trivial. Because H 1 is in their intersection, 
H 1 is trivial . Thus, H is a group with no nontrivial proper subgroups, and, thus, has 
prime order. Similarly, K has prime order. Thus, o(G) = o( H ) · o( K )  = p 2 . 

Our next step is to prove that if G satisfies C and has order divisible by two distinct 
primes, then o(G) is divisible by only those two primes and contains a normal Sylow 
subgroup. Let P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G 
such that o( P)  = p "  and o(Q) = q "' .  Then, N(N( P)) = N( P)  and N(N(Q)) = N(Q). 
Thus, there are [G: N( N(P ))] = [G: N(P )] distinct conjugates of N( P)  in G. Because 
all such conjugates have the same order, then, by C, any two of them are equal or 
have trivial intersection. Thus , those conjugates contain: 

[ G :  N( P ) ]  · ( O ( N( P ) )  - 1) + 1 = a ( G) - [ G :  N( P ) ] + 1 

distinct elements of G, and similarly for N(Q). Now, suppose the intersection of any 
conjugate of N( P) and any conjugate of N(Q) is trivial. Then, all these conjugates 
contain 2 o(G) - [G :  N( P)] - [G :  N(Q)] + 1 distinct elements of G. Thus , 

1 � [ G : N( P ) ]  + [ G : N( Q) ] - o ( G) = o ( G ) ( 1/o( N( P ) )  + 1/o( N( Q) )  - 1) . 

Because both o(N(P )) and o(N(Q)) are integers , at least one of them is equal to 1 ,  
which i s  a contradiction. Thus , some conjugate of  N(Q) meets N( P)  nontrivially. 

Without loss of generality, by C, some conjugate of N(Q) is a subset of N( P) . We 
may choose Q such that N(Q) is a subset of N( P) . Because P is normal in N( P), 
( P , Q ) has order p "q m . Now, suppose another prime r divides o(G). If the Sylow 
r-subgroup has order r k , then the same argument implies G has a subgroup of order 
p " r k that contains P, a contradiction of C. Thus , o(G) = p "q "' and P is normal in G. 

It  remains to  show that if  a( G) = p "q "' with P i s  normal in  G, then G i s  either of 
order pq or a semi-direct product (?LP X ?L P ) ><I ?l_q with no subgroup of order pq . 
Suppose H is a subgroup of G of order pq. Then, there exist elements a and b of H 
such that o( a) = p and o(b) = q .  Thus , a is contained in a Sylow p-subgroup of G 
and b is contained in a Sylow q-subgroup of G. Thus , by C ,  H contains both those 
Sylow subgroups and a( G) = pq. 

Now assume that G has no subgroup of order pq . We know that P satisfies C so 
must be either cyclic or (isomorphic to) ?l_P X ?LP . Suppose P is cyclic. Then P 
contains a unique subgroup K of order p .  Because P is the unique Sylow p-subgroup 
of G, K is the unique subgroup of order p and hence· normal in G. Let b E G  have 
order q .  Because K is normal in G, the subgroup ( K. ,  b )  has order pq , which is a 
contradiction. Therefore ,  P is .ZP X ?LP . Now if b E G has order q ,  then ( P ,  b )  
intersects a Sylow q-subgroup of G containing b nontri:vially, hence must contain this 
Sylow q-subgroup. It fbllows that G is a semi-direct product (?LP X 7l_ P ) ><I ?l_q  with no 
subgroup of order pq. 

The proof of necessity is now complete . 

Also solved by Michel Bataille ( France), Robin Chapman (United Kingdom), Daniele Donini ( Italy ), 
and Kandasamy Muthuvel. There were two incorrect solutions. 
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Answers 

Solutions to the Quickies on page 63 . 
A897. If the claim is false, then there exist a prime p and a positive integer m such 
that p m  divides a but not b a .  Now p l b because a l bc .  Thus p a l b a , so a < m. Then 
2 " s p " < p m s a , a contradiction. 

A898. Because j(a) > a , j(b) < b, and J is continuous , for o > 0 sufficiently small, 
j(a + le o ) > a +  le o  and j(b - le o ) <  b - le o for le = 0, 1, . . .  , n - 1. Thus, the contin­
uous function 

g ( X ) = j( X ) + j( X + 0 ) + j( X + 2 0 ) + . . .  + j( X + ( n - 1) 0 )  
- ( X + ( X + 0 ) + ( X + 2 0 ) + · · ·  + ( X + ( n - 1) 0 ) ) 

satisfies g(a) > a  and g(b - (n - 1) o )  < b - (n - 1) o .  It follows that there exists 
c E [ a ,  b - ( n - 1) o ]  such that g (c) = c . Setting ck = c + (le - 1) o for le = 1, 2, . . .  , n 

completes the proof. 

Answer to o ld  Q u ick ie ,  page 58 

Six cuts are required ; for not matter how the cutting i s  done, the 6 faces 
of the central cube must result from separate cut s .  The job may be done 

without any piling at all .  

An old P rob lem (Ma rch  1940) 

Find such a four-digit number that when 385604 i s  written a t  its right the 

result is a perfect square . (Proposed by V. Thibault, Le Mans, France . )  
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Mullen, William, Eureka! Rare Archimedes manuscript finds its way to Field, Chicago 
Tribune (3 November 1999) . The Archimedes Palimpsest , videotape, Walters Art Gallery 
(600 North Charles St . ,  Baltimore, MD 2120 1 ) ,  1 999; 30 min, $ 14.95. Stein, Sherman, 
Archimedes: What Did He Do Besides Cry Eureka '? ,  Mathematical Association of America, 
1999; x + 155 pp, $24.95 (P) . ISBN Q-88385-328-0. 

The Archimedes palimpsest, which contains the only version of his Method Treating of 
Mechanical Problems ( The Method, for short) ,  was acquired by an anonymous collector in 
October 1998 for $2 million. It was on display July-August at the Walters Art Gallery in 
Baltimore and traveled to the Field Museum in Chicago for November-December 1999. By 
the time you read this, it will have returned to the Walters , where it will be restored over 
the next two years before being digitized and transcribed. 

The book itself is in extremely poor condition, with charred edges and severe mold on 
its pages. At Chicago, it was opened to a page on which the observer was (necessarily) 
advised by the exhibitors to look in the margin to find what appeared to be the only visible 
traces of the Archimedes manuscript below the overlaid church prayers. Very little more 
was visible on a separated page under ultraviolet light . The transcription in 1906 by J .L .  
Heiberg equipped only with a magnifying glass would seem impossible today. A photograph 
that he made of one page (reproduced on p. 30 of Stein's book) suggests that the text was 
much clearer then, and hence the book must have suffered far greater damage in the past 
century than in the preceding six hundred years. The cover of Stein 's book shows a digitally 
enhanced photograph of a page, and the text appears with remarkable clarity-a sign that 
the wait for the restoration and transcription will be worthwhile, though it is unlikely that 
there will be any great new revelations. 

Meanwhile, the Walters has produced an exciting video about the palimpsest 's history, 
with further details at http : I !www . thewalters . erg/archimedes/frame . html. The video 
avoids questions of ownership; the Greek Patriarch says the palimpsest was stolen from his 
library and tried to stop the auction sale, and the video shows the back of the second-last 
bidder-the Greek consul, at $ 1 .9 million-without mention. The video mentions that 
one page is at Cambridge University, apparently torn out and stolen in 1846 by K. von 
Tischendorf, whose mention of the palimpsest was crucial to Heiberg's discoveries. 

The video also gives no hint whatever about the mathematical contents; for that you 
may turn to Stein's book for an exposition understandable at the high-school level. Stein 
devotes a chapter each to the life of Archimedes and to the palimpsest itself but the re­
maining nine chapters to Archimedes' results in The Method and other works (though Stein 
doesn't always make clear which work a result comes from) .  Stein uses affine transforma­
tions to derive a few key facts, an anachronism that makes the proofs easier but obscures 
some of what Archimedes did. 

Thomas Heath succinctly summarizes The Method in his A History of Greek Mathe­
matics , Vol. 2, 27-34; New York, Dover. The text of it appears in translation in Heath's 
The Works of Archimedes (New York: Dover, 1953; reprinted in Encyclopredia Britannica's 
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Great Books of the Western World, Vol. 10 (not 1 1 ,  as Stein cites) , 559-592) and in E.J .  
Dijksterhuis's Archimedes (Princeton, NJ : Princeton University Press , 1987) . Heiberg's 
Greek transcription is in "Eine neue Archimedeshandschrift," Hermes 42 ( 1907) 235-303. 

Maz'ya, Vladimire, and Tatyana Shaposhnikova, Jacques Hadamard, a Universal Mathe­
matician, American Mathematical Society and London Mathematical Society, 1998; reprinted 
with corrections 1999 , $49 (P) . xxv + 574 pp. ISBN 0-8218-1923-2. 

This is a beautifully illustrated, well-designed, and thorough book about Hadamard ( 1865-
1963) . About 60% is devoted to his life, and the rest recounts his work in a variety of fields: 
analytic function theory, number theory, analytical mechanics, calculus of variations, math­
ematical physics, and partial differential equations. The descriptions of the mathematical 
work are technical but with a low density of equations and a great deal of prose explanation 
and motivation. One could hardly wish for a more readable and enticing volume. 

Barbeau, Edward J . ,  Mathematical Fallacies, Flaws, and Flimflam , Mathematical Associ­
ation of America, 1999 ; xvi + 167 pp, $23.95 (P) . ISBN Q-88385-529-1 .  

This intriguing book collects faulty mathematical arguments from the column o f  the same 
title in College Mathematics Journal for the past 1 1  years. Here the fallacies are categorized 
by area. The result is a rich collection of conundrums; use them to amaze your friends , 
confound your colleagues, and mystify your students, till they beg for the explanation. 

Ross, Sheldon M. , An Introduction to Mathematical Finance , Cambridge University Press, 
1999 ; XV + 184 pp, $34.95. ISBN 0-521-77043-2. 

This book is a lean and carefully streamlined approach to the Black-Scholes call option 
formula by a master of exposition about probability. The dust jacket claims correctly 
that "No other text presents such sophisticated topics in a mathematically accurate but 
accessible way." Integrals appear only on p. 55, and derivatives are almost as scarce; but 
this is a book for students with the maturity of a year of calculus behind them. 

Francis , Richard L . ,  21 problems for the twenty-first century, Consortium: The Newsletter 
of the Consortium for Mathematics and Its Applications (COMAP} No. 71 (Fall 1999) 7-10 .  

Hilbert 's famous address to the 1900 International Congress of Mathematicians set out 
20 problems for mathematicians of this century. Francis gives 21 for the next, based on 
a worldwide survey of mathematicians. The problem statements are very succinct (they 
almost fit on one page) , excluding, as Francis admits, problems more difficult to state, such 
as the Riemann Hypothesis and the Poincare Conjecture--after all, his article is directed to 
high-school mathematics teachers. Hence his problems are predominantly from elementary 
number theory. Still, he enunciates challenging problems that respond in understandable 
terms-and may inspire--students who wonder what is still unknown in mathematics. 

Steiner, Ray (steiner«<math . gbsu . edu) , Possible breakthrough in Catalan's conjecture, 
Usenet newsgroup sci . math 15 December 1999. 

Francis 's Problem 14 (see above review) is Catalan's Problem: "Are 8 and 9 the only exact 
powers that are consecutive integers?" It may be solved before the twenty-first century ( i .e . , 
by 1/ 1/01 ) .  The conjecture amounts to lxP - yq l = 1 has no nontrivial integer solutions for 
odd primes p and q, p < q. New results show that 107 < p < 7. 15  x 101 1  and q < 7.78 x 1016 

and that p and q must form a double Wieferich pair, i .e . , pq- 1 = 1 (mod q2 ) and qP- 1 = 1 
(mod p2 ) .  These and other limitations suggest that a distributed computation could search 
all 1020 possible pairs "quite rapidly." (Thanks to Darrah Chavey of Beloit College .)  
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60th Annual William Lowell Putnam Mathematical 
Competition 

Editor 's note: Additional Putnam solutions will appear later in the 
American Mathematical Monthly. 

A-1 Find polynomials f(x) ,  g (x) , and h(x) , if they exist , such that, for all x ,  { -1  
J f (x) J - Jg(x) J + h(x) = 3x  + 2 

-2x + 2  

if x < -1 ,  
if -1 :::; X :::; 0, 
if X > 0. 

Solution. The functions f (x) = 3(x + 1)/2 ,  g (x) = 5xj2, and h(x) = -x + 1/2 
satisfy the conditions. To find these, we observe that the function is piecewise linear, 
with slope changes at x = - 1  and x = 0. Thus , we are led to test functions of the 
form f (x) = A(x + 1 ) ,  g (x) = Bx, and h(x) = mx + b, for constants A, B, m, and 
b, yet to be determined. It then follows that 

-A(x + 1) + Bx + mx + b = -1 ,  
A(x + 1 )  + Bx  + mx  + b = 3x  + 2 ,  
A(x + 1) - Bx + mx + b = -2x + 2 ,  

Equating the x-coefficients in  each case yields 

-A + B + m = O 
A + B + m = 3  
A - B + m =  -2 

if x < - 1; 
if - 1  :::; X :::; 0 ; 
if X > 0. 

( 1 )  
(2) 
(3) 

From (1) and (3) we get m = -1 ;  then, from (2) and (3) , we get A = 3/2 and 
B = 5/2. Equating the constant terms in each case yields -A + b = - 1  and 
A +  b = 2. These are simultaneously satisfied by b = 1 /2 .  

A-2 Let p(x) be a polynomial that is non-negative for all x. Prove that , for some 
k 

k ,  there are polynomials ft (x) , . . .  , fk (x) such that p(x) = L (fi (x)) 2 • 
j=l 

Solution. We induct on the degree of p. If the degree of p is 0, it is a non-negative 
constant and therefore is the square of a constant polynomial. Assume the degree of 
p is greater than 0 and that the result if true for polynomials of degree less than the 
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degree of p. Let p have an absolute minimum at x = x0 (there must be an absolute 
minimum because p is a polynomial and p 2:: 0) . Then p(x) = p(x0) + (x - x0)2q(x) , 
with q(x) non-negative for all x. By the induction hypothesis , q(x) = L (fi (x)) 2 , 

so that p(x) = ( � ) 2 + L ( (x - xo) fj (x) )2 • 
j 

j 

1 (X) 

A-3 Consider the power series expansion -----::- = """ anxn . Prove that ,  
1 - 2x - x2 L.t 

n=O 
for each integer n 2:: 0, there is an integer m such that a� + a�+l  = am . 
Solution. We have 

1 1 ( I + \1'2)/2J2 ( 1 - J2) /2\1'2 
1 - 2x - x2 -

( 1 - (1  + v'2)x) (I - ( 1 - v'2)x) 
-

1 - (1 + J2)x 1 - (1 - J2)x 

= 1 + J2 f ( 1 + J2) n 
Xn - 1 - J2 f ( 1 - J2) n 

Xn . 2J2 n=O 2v/2 n=O 

Hence 
(1 + J2)n+l - (1 - v/2)n+l 

an = 2v/2 
Straightforward algebraic manipulation yields 

Note: Equation (*) can also be deduced from the fact that an = a1 >.f + a2>.2 , 
where >.1 , >.2 = 1 ± v'2, the roots of x2 - 2x - 1 ,  using a0 = 1 ,  a1 = 2. 

(X) (X) 2 
A-4 Sum the series """ """ 

( 
m n 

) . L.t L.t 3m n 3m + m 3n 
m=l n=l 

Solution. The double series is 

The latter series is just S, with m and n switched. Thus 

Using the identity f
o 

mxm = x d� (I:o xm) = x d� ( 1 � x ) 
get 28 = (3/4) 2 • Hence S = 9/32 . 

X 
(1 - x)2 ' we 
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A-5 Prove that there is a constant C such that , if p(x) is a polynomial of degree 
1999, then 

n 
Solution. Let n = 1999. Consider polynomials p(x) L amxm such that 

m=O n 

!
1 � a;, = 1 .  Then _1 IP( x) I dx is a continuous function on this closed and bounded 

set . Hence it assumes a minimum, p,. The minimum is positive, for if / 1 
lp(x) I dx = 

-1 0, then p(x) is identically 0. For arbitrary coefficients ao , a1 , a2 , . . .  , am , let c = (t:;, a;'.) ' I' .  Then, by the P'eceding wmk, [, I �p( x) I dx 5, M· Hene<e 

[', IP(x) l dx 2: P (t, a;'.) 'i' 2: P lao l = PIP(O) I . 

This is the desired inequality, with C = 1/ p,. 

A-6 The sequence (an)n;:_:: 1 is defined by a1 = 1, a2 = 2 ,  a3 = 24, and,  for n 2:: 4, 
6a;_1 an-3 - 8an-1 a;_2 an = 

Show that , for all n, an is an integer multiple of n.  

Solution. Let An = an /an- 1 · Then 

A 
an 6a;_1 an-3 - 8an-1 a;_2 __ 6 an-1 _ 8 an-2 __ 6A _ BA n = -- = n- 1 n-2 · an- 1 an- 1 an-2an-3 an-2 an-3 

The solution to this linear recurrence with A2 = 2 and A3 = 12 is An = 4n- 1 - 2n-1 
for n 2:: 4, as may be verified by mathematical induction. (The formula is easily 
derived by noting that 2 and 4 are the roots of x2 - 6x + 8 = 0 and so An is 
expressible in the form c1 2n + c24n . )  This establishes that all the A's and a's are 
nonzero. Then 

an = a1 A2A3 · · · An =  (4 - 2) (42 - 22 ) · · · (4n- 1 - 2n-1 ) .  
We will prove that n divides an by showing that each prime power p8 that divides 
n also divides an . If p = 2, the power of 2 that divides an is 

21+2+ - ·+ (n- 1) = 2(n2 -n)/2 . 

Since s :::; log2 n < (n2 - n) /2 , this shows that 28 divides an . For odd p, Fermat 's 
little theorem implies 

4k (p- 1) - 2k(p- 1) = 1 - 1 = 0 (mod p) 

for all integers k. Then the power of p is at least the number of positive k such that 

k(p - 1) :::; n - 1 .  Again, it is clear that s :::; logp (n) < l; = � J .  This proves that 

p8 divides an . 
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B-1 Right triangle ABC has right angle at C and L.BAC = (); the point D is 
chosen on AB so that IACI = I AD I  = 1 ;  the point E is chosen on BC so that 
L.CDE = e. The perpendicular to BC at E meets AB at F. Evaluate lim IEFI  . 8--tO 
[ Here, I PQ I  denotes the length of the line segment PQ. ] 

c 

A F D B 

Solution. Since IACI = IAD I ,  we have L.ADC = 1rj2 - 0/2, and so L.BDE = 
7r/2 - 9/2. Then, since L.ABC = 7r/2 - () , we see that L.BED = 39/2 .  Using the 
law of sines in b:.BED, we get 

sin ( 1r /2 - 0) cos () 
IBEI = IDB I 

sin (30/2) 
= (sec () - 1) sin (30/2) " 

Then 

I EFI  = 
IEF I  

= 
I BEl 

= 
sec () - 1 cos () 

= 
sin(() /2) cos () • 

IACI  I BC I  tan () sin(39/2) sin(30/2) cos(9/2) 

Hence lim IEFI  = -
3
1

. 8--tO 

B-2 Let P(x) be a polynomial of degree n such that P(x) = Q (x)P" (x) , where 
Q (x) is a quadratic polynomial and P" (x) is the second derivative of P(x) . Show 
that if P(x) has at least two distinct roots, then it must have n distinct roots. [ The 
roots may be either real or complex. ] 

Solution. Let r be a root of P(x) of multiplicity m � 2. Then the multiplicity of 
(x - r)2 

P" (x) at r is m - 2 ,  and Q(x) must have a double root at r, so Q (x) = 
n(n 

_ 
1 )

. 

Writing 
P (x) = am (X - r)m + · · · + (x - r)n , 

we obtain :�: � N am = am , with am =/ 0, so m = n, contrary to hypothesis. 

Thus P(x) has all roots distinct . 

B-3 Let A = { (x, y} : O � x , y < 1} . For (x, y) E A, let S(x, y) =  L xmyn , 
1 < .!.!! < 2  2 - n -

where the sum ranges over all pairs (m, n) of positive integers satisfying the indi-
cated inequalities . Evaluate 

lim (1 - xy2 ) (1 - x2y) S(x, y) . (:t,y)--t(l , l )  
(:t,y) EA 
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Solution. The exponents (m ,  n) in the sum correspond to the spots marked below 
in the first quadrant: 

We have grouped these points into congruent "parallelograms ," demonstrating that 
they are all uniquely expressible in the form 

k(1 ,  2) + £(2,  1 )  + (a, b) , 
where k and f are nonnegative integers , and (a, b) is one of { (0 , 0) , ( 1 ,  1) , (2 ,  2) } .  
Note that (0 , 0 )  is also of this forrn, and that (0, 0 )  is the only point not included 
in our sum. Then 

00 00 00 00 

1 + S(x, y) = L 'L: xk+2ly2k+l ( 1  + xy + x2y2 ) = ( 1  + xy + x2y2 ) L (xy2 ) k L (x2y)l 
k=O l=O k=O l=O 

= (1 + xy + x2y2) ( 1 - xy2) -1 ( 1 - x2y) -1 . 

Thus ( 1  - xy2 ) (1 - x2y)S(x ,  y) = 1 + xy + x2y2 - (1  - xy2 ) ( 1  - x2y) . The limit 
of the left side as (x, y) approaches ( 1 ,  1) is found by evaluating the right side at 
x = y = 1 .  The limit is then 3. 
Note:  For general rational lower and upper bounds rjs and pfq respectively, the 
same argument shows that the analogous limit is qr - ps . )  

B-4 Let f be a real function with a continuous third derivative such that f(x) , 
f' (x) , f" (x) , and f"' (x) are positive for all x. Suppose that f"' (x) � f(x) for all 
x. Show that f' (x) < 2f(x) for all x.  
Solution. Fix x.  By Taylor's theorem, for any t > 0, 

f" (x s) f(x - t) = f(x) - J' (x)t + 2
- t2 

for some s with 0 < s < t . Since f" (x - s) < f" (x) and f(x - t) > 0, we have 

f(x) - f' (x)t + f" (x) t2 > 0 2 

for all t > 0. For t =  f' (x) /f" (x) , this yields , for all x ,  ( J' (x) ) 2 < 2f(x)J" (x) . 
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Similarly, for any t > 0, 
f"' (x s) f' (x - t) = f' (x) - f" (x)t + 

2
- t2 , 

where 0 < s < t. Since f"' (x - s) :::; f(x - s) < f(x) and f' (x - t) > 0, we have, for 
all t > 0 ,  

f' (x) - f" (x)t + f (x) t2 > 0 
2 

. 

For t =  f" (x) j  f (x) , this yields ( f" (x) ) 2 < 2f(x)f' (x) for all x. Thus, for all x, 

( f' (x) ) 4 < 4 ( f(x) ) 2 ( f" (x) ) 2 < 8 ( f (x) ) 3 f' (x) , 

whence f' (x) < 2f(x) . 

B-5 For an integer n 2:: 3 ,  let () = 2n jn. Evaluate the determinant of the n x n 
matrix I +  A, where I is the n x n identity matrix and A = (ajk ) has entries 
ajk = cos ( j() + k() ) for all j, k .  
Solution. Observe that a = ei0 = e21ri/n is an n-th root of unity, and that 
cos (j()) = (eiiiJ + e-ii0 ) f2 = (ai + a-i ) j2 . Then (cos 2() cos 3() cos 4() 

A = cos 3() cos 4() cos 5B 
cos 4() cos 5() . . .  

·. : : cos (n + 1)0) 
a a-1 
a2 a-2 

1 a3 a-3 = -
2 

an a-n 

a3 + a-3 
a4 + a-4 
a5 + a-5 

(a�l 
a2 

a-2 
a3 

a
a::n) · a-3 

Let B denote the n x 2 matrix above. We must evaluate det (In + � B BT) , where 
In is the n x n identity matrix. Consider the (n + 2) x (n + 2) matrix 

specified in block form. We may block-row-reduce C by multiplying the second row 
on the left by B/2,  and adding this to the first row. This yields (In + �BET 0 ) . 

. 
BT I2 

Then the determinant is obtained from the diagonal blocks : 

det C = det (In + �BET) det (h) = det (In + �BET) .  
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However, if we block-row-reduce by multiplying the first row of C by -BT and 
adding to the second row, we establish that 

det (In + �BBT) = det (C) = det (!2 + �BT B) . 

The last matrix is a 2 x 2 matrix: 

BBT = (a�l 
a2 

a-2 
a3 

a-3 

a a-1 
a2 a-2 

a
a
_
n
n) a3 a-3 

= (a2 + a4
n
+ · · · a2n n ) (0 n) a-2 + a-4 + · · · + a-2n = n 0 

since a2 = e41ri/n is an n-th root of unity not equal to 1 (since n 2:: 3) . Thus 

B-6 Let S be a finite set of integers , each greater than 1 .  Suppose that for each 
integer n there is some 8 E S such that gcd(8 ,  n) = 1 or gcd(8 ,  n) = 8. Show that 
there exist 8 ,  t E S such that gcd(8 ,  t) is prime. [ Here, gcd (a,  b) denotes the greatest 
common divisor of a and b. ] 

Solution. Assume to the contrary that gcd (8 ,  t) is not prime for any 8 ,  t E S. 
Let P = {PI , P2 , . . .  , Pm}  be the set of primes , in increasing order, that occur as 
divisors of elements of S. We describe a decomposition P = P1 U P2 by successively 
assigning PI , P2 , . . .  , to either P1 or P2 . 

Having assigned the primes less than p, where p E P, consider the subset Sp of S 
consisting of those 8 E S such that p is the largest prime factor of 8 and all other 
prime factors of 8 have been assigned entirely to P1 or entirely to P2 . If all 8 E Sp 
are divisible by p2 , then assign 8 to P1 . (In particular, if Sp = 0 ,  then p is assigned 
to PI -) Otherwise , there cannot exist both 81 and 82 in Sp that are not divisible 
by p2 and such that , for i = 1 ,  2, the primes less than p that divide 8i are in Pi , 
for that would imply that gcd( 81 , 82 ) = p, a prime. So, in this case, assign p to 
P1 if and only if all other prime divisors of some 8 E Sp have been assigned to P2 ; 
otherwise , assign p to P2 . Note that , in any case , p1 E P1 , so that P1 =/= 0 .  

Now set n = TipEP1 p. There exists 8 E S such that gcd (8 ,  n) = 1 or gcd(8 ,  n) = 8 .  
Suppose first that gcd(8 ,  n) = 1 ,  so  that all prime divisors of  8 are in  P2 . Let p 

be the largest of these. Since p E P2 , there exists t E Sp such that all the prime 
divisors of t except p are in P1 and t is not divisible by p2 . But that implies that 
gcd (8 ,  t) = p, a prime, a contradiction. 
Hence 8 divides n,  so all prime divisors of 8 are in P1 . Let p be the largest of these. 

Since 8 divides n, 8 is not divisible by p2 . However, since 8 E Sp , this would have 
caused the assignment of p to P2 , a contradiction. 
Therefore, the assumption that gcd(8 ,  t) is not prime for any 8 ,  t E S is false. 
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